פורטל:מתמטיקה
המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
קבוצת קנטור היא קבוצה שנבנית בצורה האיטרטיבית הבאה: לוקחים קטע, ומסירים ממנו את השליש האמצעי. מבצעים פעולה דומה בכל אחד משני הקטעים שנותרו, ונשארים עם ארבעה קטעים, שגם עליהם ממשיכים את התהליך, וכך הלאה עד אינסוף. קבוצה זו תוארה בידי המתמטיקאי גאורג קנטור בשנת 1883. חשיבותה הרבה היא בתכונותיה המיוחדות, שסותרות את האינטואיציה ומציגות מעט ממורכבותו ומייחודו של האינסוף. תכונות אלה דחפו את קנטור לפתח את תורת הקבוצות. קרוב למאה שנים מאוחר יותר נמנתה קבוצת קנטור עם הקבוצות שעליהן ביסס בנואה מנדלברוט את רעיון הפרקטל. |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
אוגוסטן לואי קוֹשי (Augustin Louis Cauchy בצרפתית) (21 באוגוסט 1789 – 23 במאי 1857) הוא מתמטיקאי צרפתי, שידוע בעיקר בזכות תרומתו הרבה לאנליזה המודרנית והביסוס הלוגי והפורמלי של החשבון האינפיניטסימלי. קושי היה מתמטיקאי עמוק ויסודי, שנקט בשיטות עבודה והוכחה מדוקדקות וקפדניות (ריגורוזיות). התרבות המתמטית של קושי השפיעה רבות על תלמידיו ועל ממשיכיו ומהווה יסוד חשוב בתרבות המתמטית של ימינו. מלבד הנחלת תרבות ההוכחה הריגורוזית תרם קושי רבות בתחומים רבים של המתמטיקה והפיזיקה המתמטית. |
אף על פי שהוא נראה טריוויאלי, כלל השלישי מן הנמנע, שקובע כי כל טענה בהכרח נכונה או לא נכונה, נדחה על ידי קבוצות בפילוסופיה של המתמטיקה כגון האינטואיציוניזם כשמדובר בקבוצות אינסופיות. גישה זו גורמת לביטול האפשרות להוכחה בדרך השלילה, טכניקה בה הוכחו לראשונה כמה מהמשפטים המתמטיים החשובים ביותר, כמו אי הרציונליות של השורש הריבועי של 2 וקיומם של אינסוף מספרים ראשוניים.
גאומטריה היא הבסיס לכל הציורים.
נוסחאות למציאת פתרונות למשוואות פולינומיות ממעלות 1 עד 4. השורשים ממעלה שלישית הם אלגבריים, זאת אומרת שניתן להציב במקומם כל אחד משלושת השורשים המרוכבים. עם זאת בשתי הנוסחאות האחרונות, לא כל הצבה כזאת (כמו גם בחירה של הסימן ) תיתן שורש, אבל כל שורש אפשר לקבל כהצבה. הנוסחה האחרונה לא תקפה כשהמכנים מתאפסים, יש נוסחאות שונות למקרים אלה. שתי הנוסחאות האחרונות נחשבות לאחד ההישגים המשמעותיים של המתמטקה של הרנסאנס. בגלל החזרות הרבות, אפשר לפשט משמעותית את שתי הנוסחאות הארחונות אם מכניסים סימוני עזר בשביל חלקים של הנוסחה שחוזרים על עצמם. לפי תורת גלואה, לא ניתן לפתח נוסחאות המבוססות על ארבע פעולות החשבון ושורשים עבור משוואות ממעלה גבוהה יותר.
עריכהאוצרות הרשת
בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: אלף אפס "אלף אפס" הוא האתר של רבעון בשם זה, שיצא לאור, ב-23 גיליונות, על ידי החוג למתמטיקה במכללה ירושלים. הרבעון והאתר לוקחים את המתמטיקה בקלות. האתר מכיל חידות מקסימות ברמות שונות ומאמרים שלא נכללים בחומר של בחינות הבגרות אבל כיף לקרוא אותם. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: Martin Gardner, Mathematical Puzzles and Diversions, Simon & Schuster, 1959 במשך כ-30 שנה פרסם מרטין גרדנר טור קבוע בירחון "סיינטיפיק אמריקן". רבים מהטורים קובצו לאחר פרסומם בספרים, והספר שלפנינו הוא הראשון בסדרה זו. בספר, שאופיו משתקף גם בבאים אחריו, 16 פרקים, ובהם שני מקבצים של חידות מתמטיות (כולל חידת לוח השחמט וחידת ארבע החיפושיות), ופרקים העוסקים בשעשועים מתמטיים: הקספלקסגון, ריבוע קסם, טבעת מביוס, נים ועוד. |
משפטים מפורסמים
|
השערות מפורסמות
|
המשפט האחרון של פרמה הוא משפט מפורסם בתורת המספרים שאותו ניסח המתמטיקאי פייר דה פרמה באמצע המאה ה-17, והוא נותר כבעיה פתוחה עד שהוכח על ידי אנדרו ויילס בשנת 1995. במשך כ-350 שנים היה לאחת הטענות המפורסמות ביותר בעולם המתמטיקה שלא הוכחו.
המשפט טוען כי:
עבור n טבעי גדול מ-2, לא קיימים מספרים טבעיים x,y,z המקיימים את המשוואה: . |
ערכים המחפשים עורכים |
דיונים, ייעוץ ועזרה
|