This codebase is the official implementation of AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation
(ICML, 2023), and Domain-Specific Risk Minimization for Out-of-Distribution Generalization
(SIGKDD, 2023)
This codebase is mainly based on DomainBed, and T3A.
python download.py --data_dir=/my/datasets/path
Note: set the target datasets in the download.py
python -m domainbed.scripts.train\
--data_dir /my/datasets/path\
--output_dir /my/pretrain/path\
--algorithm ERM\
--dataset PACS\
--hparams "{\"backbone\": \"resnet50\"}"
This scripts will produce new directory /my/pretrain/path
, which include the full training log.
Note: change --dataset PACS
for training on other datasets (e.g., VLCS
, OfficeHome
, TerraIncognita
).
Note: change --hparams "{\"backbone\": \"resnet50\"}"
for using other backbones (e.g., resnet18
, ViT-B16
, HViT
).
python -m domainbed.scripts.unsupervised_adaptation\
--input_dir=/my/pretrain/path\
--adapt_algorithm=T3A
This scripts will produce a new file in /my/pretrain/path
, whose name is results_{adapt_algorithm}.jsonl
.
Note: change --adapt_algorithm=T3A
for using other test time adaptation methods (AdaNPC
, AdaNPCBN
, or TentClf
).
python -m domainbed.scripts.supervised_adaptation\
--input_dir=/my/pretrain/path\
--ft_mode=clf
This scripts will produce a new file in /my/pretrain/path
, whose name is results_{ft_mode}.jsonl
.
- resnet18
- resnet50
- BiT-M-R50x3
- BiT-M-R101x3
- BiT-M-R152x2
- ViT-B16
- ViT-L16
- DeiT
- Hybrid ViT (HViT)
- MLP-Mixer (Mixer-L16)
You can use scripts/hparam_search.sh
. Specifically, for each dataset and base algorithm, you can just type a following command.
sh scripts/hparam_search.sh resnet50 PACS ERM
Note that, it automatically starts 240 jobs, and take many times to finish.
You can use scripts/launch.sh
. Specifically, for each backbone, you can just type following commands.
Specifically, for baselines based on ResNet-50 (PLClf, PLFull, SHOT, SHOTIM, T3A)
sh scripts/launch.sh pretrain resnet50 10 3 local ERM
sh scripts/launch.sh sup resnet50 10 3 local ERM
sh scripts/launch.sh unsup resnet50 10 3 local ERM
for baselines based on ResNet-50-BN (TentClf, TentNorm, TentFull)
sh scripts/launch.sh pretrain resnet50-BN 10 3 local ERM
sh scripts/launch.sh sup resnet50-BN 10 3 local ERM
sh scripts/launch.sh unsup resnet50-BN 10 3 local ERM
for baselines based on KNN training algorithm
sh scripts/launch.sh pretrain resnet50 10 3 local KNN
sh scripts/launch.sh sup resnet50 10 3 local AdaNPC
sh scripts/launch.sh unsup resnet50 10 3 local AdaNPC
sh scripts/launch.sh pretrain resnet50 10 3 local DRM
sh scripts/launch.sh sup resnet50 10 3 local DRM
sh scripts/launch.sh unsup resnet50 10 3 local DRM
This source code is released under the MIT license, included here.
If you find this repo useful, please consider citing:
@inproceedings{zhang2023adanpc,
title={Adanpc: Exploring non-parametric classifier for test-time adaptation},
author={Zhang, Yifan and Wang, Xue and Jin, Kexin and Yuan, Kun and Zhang, Zhang and Wang, Liang and Jin, Rong and Tan, Tieniu},
booktitle={International Conference on Machine Learning},
pages={41647--41676},
year={2023},
organization={PMLR}
}
@misc{zhang2022domainspecific,
title={Domain-Specific Risk Minimization for Out-of-Distribution Generalization},
author={Yi-Fan Zhang and Jindong Wang and Jian Liang and Zhang Zhang and Baosheng Yu and Liang Wang and Dacheng Tao and Xing Xie},
year={2023},
archivePrefix={KDD '23: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
primaryClass={cs.LG}
}