Release v|version| | 📚 Full docs on Read the Docs (Installation).
Dataclass Wizard 🪄
Simple, elegant wizarding tools for Python’s dataclasses
.
Lightning-fast ⚡, pure Python, and lightweight — effortlessly convert dataclass instances to/from JSON, perfect for complex and nested dataclass models!
Behold, the power of the Dataclass Wizard:
>>> from __future__ import annotations >>> from dataclasses import dataclass, field >>> from dataclass_wizard import JSONWizard ... >>> @dataclass ... class MyClass(JSONWizard): ... my_str: str | None ... is_active_tuple: tuple[bool, ...] ... list_of_int: list[int] = field(default_factory=list) ... >>> string = """ ... { ... "my_str": 20, ... "ListOfInt": ["1", "2", 3], ... "isActiveTuple": ["true", false, 1] ... } ... """ ... >>> instance = MyClass.from_json(string) >>> instance MyClass(my_str='20', is_active_tuple=(True, False, True), list_of_int=[1, 2, 3]) >>> instance.to_json() '{"myStr": "20", "isActiveTuple": [true, false, true], "listOfInt": [1, 2, 3]}' >>> instance == MyClass.from_dict(instance.to_dict()) True
---
Contents
v1
Opt-In 🚀- Why Use Dataclass Wizard?
- Key Features
- Installation
- Wizard Mixins ✨
- Supported Types 🧑💻
- Usage and Examples
- JSON Marshalling
- No Inheritance Needed
- Custom Key Mappings
- Mapping Nested JSON Keys
- Extending from
Meta
- Date and Time with Custom Patterns
- "Recursive" Dataclasses with Cyclic References
- Dataclasses in
Union
Types - Supercharged
Union
Parsing - Conditional Field Skipping
- Serialization Options
Environ
Magic- Field Properties
- What's New in v1.0
- Contributing
- TODOs
- Credits
Early access to V1 is available! To opt in, simply enable v1=True
in the Meta
settings:
from dataclasses import dataclass
from dataclass_wizard import JSONPyWizard
from dataclass_wizard.v1 import Alias
@dataclass
class A(JSONPyWizard):
class _(JSONPyWizard.Meta):
v1 = True
my_str: str
version_info: float = Alias(load='v-info')
# Alternatively, for simple dataclasses that don't subclass `JSONPyWizard`:
# LoadMeta(v1=True).bind_to(A)
a = A.from_dict({'my_str': 'test', 'v-info': '1.0'})
assert a.version_info == 1.0
assert a.to_dict() == {'my_str': 'test', 'version_info': 1.0}
For more information, see the Field Guide to V1 Opt-in.
The upcoming V1 release brings significant performance improvements in de/serialization. Personal benchmarks show that V1 can make Dataclass Wizard
approximately 2x faster than pydantic
!
While some features are still being refined and fully supported, v1 positions Dataclass Wizard alongside other high-performance serialization libraries in Python.
Effortlessly handle complex data with one of the fastest and lightweight libraries available! Perfect for APIs, JSON wrangling, and more.
- 🚀 Blazing Fast — One of the fastest libraries out there!
- 🪶 Lightweight — Pure Python, minimal dependencies
- 👶 Easy Setup — Intuitive, hassle-free
- ☝️ Battle-Tested — Proven reliability with solid test coverage
- ⚙️ Highly Customizable — Endless de/serialization options to fit your needs
- 🎉 Built-in Support — JSON, YAML, TOML, and environment/settings management
- 📦 Full Python Type Support — Powered by type hints with full support for native types and
typing-extensions
- 📝 Auto-Generate Schemas — JSON to Dataclass made easy
- 🔄 Flexible (de)serialization — Marshal dataclasses to/from JSON, TOML, YAML, or
dict
with ease. - 🌿 Environment Magic — Map env vars and
.env
files to strongly-typed class fields effortlessly. - 🧑💻 Field Properties Made Simple — Add properties with default values to your dataclasses.
- 🧙♂️ JSON-to-Dataclass Wizardry — Auto-generate a dataclass schema from any JSON file or string instantly.
Dataclass Wizard is available on PyPI. You can install it with pip
:
$ pip install dataclass-wizard
Also available on conda via conda-forge. To install via conda
:
$ conda install dataclass-wizard -c conda-forge
This library supports Python 3.9+. Support for Python 3.6 – 3.8 was available in earlier releases but is no longer maintained, as those versions no longer receive security updates.
For convenience, the table below outlines the last compatible version of Dataclass Wizard for unsupported Python versions (3.6 – 3.8):
Python Version | Last Version of dataclass-wizard |
Python EOL |
---|---|---|
3.6 | 0.26.1 | 2021-12-23 |
3.7 | 0.26.1 | 2023-06-27 |
3.8 | 0.26.1 | 2024-10-07 |
See the package on PyPI and the Changelog in the docs for the latest version details.
In addition to JSONWizard
, these Mixin classes simplify common tasks and make your data handling spellbindingly efficient:
- 🪄 EnvWizard — Load environment variables and .env files into typed schemas, even supporting secret files (keys as file names).
- 🎩 JSONPyWizard — A helper for
JSONWizard
that preserves your keys as-is (no camelCase changes). - 🔮 JSONListWizard — Extend
JSONWizard
to convert lists into Container objects. - 💼 JSONFileWizard — Convert dataclass instances to/from local JSON files with ease.
- 🌳 TOMLWizard — Map your dataclasses to/from TOML format.
- 🧙♂️ YAMLWizard — Convert between YAML and dataclass instances using
PyYAML
.
Dataclass Wizard supports:
- 📋 Collections: Handle
list
,dict
, andset
effortlessly. - 🔢 Typing Generics: Manage
Union
,Any
, and other types from the typing module. - 🌟 Advanced Types: Work with
Enum
,defaultdict
, anddatetime
with ease.
For more info, check out the Supported Types section in the docs for detailed insights into each type and the load/dump process!
Seamless JSON De/Serialization with JSONWizard
from __future__ import annotations # Optional in Python 3.10+
from dataclasses import dataclass, field
from enum import Enum
from datetime import date
from dataclass_wizard import JSONWizard
@dataclass
class Data(JSONWizard):
# Use Meta to customize JSON de/serialization
class _(JSONWizard.Meta):
key_transform_with_dump = 'LISP' # Transform keys to LISP-case during dump
a_sample_bool: bool
values: list[Inner] = field(default_factory=list)
@dataclass
class Inner:
# Nested data with optional enums and typed dictionaries
vehicle: Car | None
my_dates: dict[int, date]
class Car(Enum):
SEDAN = 'BMW Coupe'
SUV = 'Toyota 4Runner'
# Input JSON-like dictionary
my_dict = {
'values': [{'vehicle': 'Toyota 4Runner', 'My-Dates': {'123': '2023-01-31'}}],
'aSampleBool': 'TRUE'
}
# Deserialize into strongly-typed dataclass instances
data = Data.from_dict(my_dict)
print((v := data.values[0]).vehicle) # Prints: <Car.SUV: 'Toyota 4Runner'>
assert v.my_dates[123] == date(2023, 1, 31) # > True
# Serialize back into pretty-printed JSON
print(data.to_json(indent=2))
Map Environment Variables with EnvWizard
Easily map environment variables to Python dataclasses:
import os
from dataclass_wizard import EnvWizard
os.environ.update({
'APP_NAME': 'My App',
'MAX_CONNECTIONS': '10',
'DEBUG_MODE': 'true'
})
class AppConfig(EnvWizard):
app_name: str
max_connections: int
debug_mode: bool
config = AppConfig()
print(config.app_name) # My App
print(config.debug_mode) # True
📖 See more on EnvWizard in the full documentation.
Dataclass Properties with property_wizard
Add field properties to your dataclasses with default values using property_wizard
:
from __future__ import annotations # This can be removed in Python 3.10+
from dataclasses import dataclass, field
from typing_extensions import Annotated
from dataclass_wizard import property_wizard
@dataclass
class Vehicle(metaclass=property_wizard):
wheels: Annotated[int | str, field(default=4)]
# or, alternatively:
# _wheels: int | str = 4
@property
def wheels(self) -> int:
return self._wheels
@wheels.setter
def wheels(self, value: int | str):
self._wheels = int(value)
v = Vehicle()
print(v.wheels) # 4
v.wheels = '6'
print(v.wheels) # 6
assert v.wheels == 6, 'Setter correctly handles type conversion'
📖 For a deeper dive, visit the documentation on field properties.
Generate Dataclass Schemas with CLI
Quickly generate Python dataclasses from JSON input using the wiz-cli
tool:
$ echo '{"myFloat": "1.23", "Items": [{"created": "2021-01-01"}]}' | wiz gs - output.py
from dataclasses import dataclass
from datetime import date
from typing import List, Union
from dataclass_wizard import JSONWizard
@dataclass
class Data(JSONWizard):
my_float: Union[float, str]
items: List['Item']
@dataclass
class Item:
created: date
📖 Check out the full CLI documentation at wiz-cli.
JSONSerializable
(aliased to JSONWizard
) is a Mixin class which
provides the following helper methods that are useful for serializing (and loading)
a dataclass instance to/from JSON, as defined by the AbstractJSONWizard
interface.
Method | Example | Description |
---|---|---|
from_json |
item = Product.from_json(string) | Converts a JSON string to an instance of the dataclass, or a list of the dataclass instances. |
from_list |
list_of_item = Product.from_list(l) | Converts a Python list object to a list of the
dataclass instances. |
from_dict |
item = Product.from_dict(d) | Converts a Python dict object to an instance
of the dataclass. |
to_dict |
d = item.to_dict() | Converts the dataclass instance to a Python dict
object that is JSON serializable. |
to_json |
string = item.to_json() | Converts the dataclass instance to a JSON string representation. |
list_to_json |
string = Product.list_to_json(list_of_item) | Converts a list of dataclass instances to a JSON string representation. |
Additionally, it adds a default __str__
method to subclasses, which will
pretty print the JSON representation of an object; this is quite useful for
debugging purposes. Whenever you invoke print(obj)
or str(obj)
, for
example, it'll call this method which will format the dataclass object as
a prettified JSON string. If you prefer a __str__
method to not be
added, you can pass in str=False
when extending from the Mixin class
as mentioned here.
Note that the __repr__
method, which is implemented by the
dataclass
decorator, is also available. To invoke the Python object
representation of the dataclass instance, you can instead use
repr(obj)
or f'{obj!r}'
.
To mark a dataclass as being JSON serializable (and
de-serializable), simply sub-class from JSONSerializable
as shown
below. You can also extend from the aliased name JSONWizard
, if you
prefer to use that instead.
Check out a more complete example of using the JSONSerializable
Mixin class.
It is important to note that the main purpose of sub-classing from
JSONWizard
Mixin class is to provide helper methods like from_dict
and to_dict
, which makes it much more convenient and easier to load or
dump your data class from and to JSON.
That is, it's meant to complement the usage of the dataclass
decorator,
rather than to serve as a drop-in replacement for data classes, or to provide type
validation for example; there are already excellent libraries like pydantic that
provide these features if so desired.
However, there may be use cases where we prefer to do away with the class
inheritance model introduced by the Mixin class. In the interests of convenience
and also so that data classes can be used as is, the Dataclass
Wizard library provides the helper functions fromlist
and fromdict
for de-serialization, and asdict
for serialization. These functions also
work recursively, so there is full support for nested dataclasses -- just as with
the class inheritance approach.
Here is an example to demonstrate the usage of these helper functions:
Note
As of v0.18.0, the Meta config for the main dataclass will cascade down
and be merged with the Meta config (if specified) of each nested dataclass. To
disable this behavior, you can pass in recursive=False
to the Meta config.
from __future__ import annotations
from dataclasses import dataclass, field
from datetime import datetime, date
from dataclass_wizard import fromdict, asdict, DumpMeta
@dataclass
class A:
created_at: datetime
list_of_b: list[B] = field(default_factory=list)
@dataclass
class B:
my_status: int | str
my_date: date | None = None
source_dict = {'createdAt': '2010-06-10 15:50:00Z',
'List-Of-B': [
{'MyStatus': '200', 'my_date': '2021-12-31'}
]}
# De-serialize the JSON dictionary object into an `A` instance.
a = fromdict(A, source_dict)
print(repr(a))
# A(created_at=datetime.datetime(2010, 6, 10, 15, 50, tzinfo=datetime.timezone.utc),
# list_of_b=[B(my_status='200', my_date=datetime.date(2021, 12, 31))])
# Set an optional dump config for the main dataclass, for example one which
# converts converts date and datetime objects to a unix timestamp (as an int)
#
# Note that `recursive=True` is the default, so this Meta config will be
# merged with the Meta config (if specified) of each nested dataclass.
DumpMeta(marshal_date_time_as='TIMESTAMP',
key_transform='SNAKE',
# Finally, apply the Meta config to the main dataclass.
).bind_to(A)
# Serialize the `A` instance to a Python dict object.
json_dict = asdict(a)
expected_dict = {'created_at': 1276185000, 'list_of_b': [{'my_status': '200', 'my_date': 1640926800}]}
print(json_dict)
# Assert that we get the expected dictionary object.
assert json_dict == expected_dict
If you ever find the need to add a custom mapping of a JSON key to a dataclass
field (or vice versa), the helper function json_field
-- which can be
considered an alias to dataclasses.field()
-- is one approach that can
resolve this.
Example below:
from dataclasses import dataclass
from dataclass_wizard import JSONSerializable, json_field
@dataclass
class MyClass(JSONSerializable):
my_str: str = json_field('myString1', all=True)
# De-serialize a dictionary object with the newly mapped JSON key.
d = {'myString1': 'Testing'}
c = MyClass.from_dict(d)
print(repr(c))
# prints:
# MyClass(my_str='Testing')
# Assert we get the same dictionary object when serializing the instance.
assert c.to_dict() == d
The dataclass-wizard
library lets you map deeply nested JSON keys to dataclass fields using custom path notation. This is ideal for handling complex or non-standard JSON structures.
You can specify paths to JSON keys with the KeyPath
or path_field
helpers. For example, the deeply nested key data.items.myJSONKey
can be mapped to a dataclass field, such as my_str
:
from dataclasses import dataclass
from dataclass_wizard import path_field, JSONWizard
@dataclass
class MyData(JSONWizard):
my_str: str = path_field('data.items.myJSONKey', default="default_value")
input_dict = {'data': {'items': {'myJSONKey': 'Some value'}}}
data_instance = MyData.from_dict(input_dict)
print(data_instance.my_str) # Output: 'Some value'
You can use custom paths to access nested keys and map them to specific fields, even when keys contain special characters or follow non-standard conventions.
Example with nested and complex keys:
from dataclasses import dataclass
from typing import Annotated
from dataclass_wizard import JSONWizard, path_field, KeyPath
@dataclass
class NestedData(JSONWizard):
my_str: str = path_field('data[0].details["key with space"]', default="default_value")
my_int: Annotated[int, KeyPath('data[0].items[3.14].True')] = 0
input_dict = {
'data': [
{
'details': {'key with space': 'Another value'},
'items': {3.14: {True: "42"}}
}
]
}
# Deserialize JSON to dataclass
data = NestedData.from_dict(input_dict)
print(data.my_str) # Output: 'Another value'
# Serialize back to JSON
output_dict = data.to_dict()
print(output_dict) # {'data': {0: {'details': {'key with space': 'Another value'}, 'items': {3.14: {True: 42}}}}}
# Verify data consistency
assert data == NestedData.from_dict(output_dict)
# Handle empty input gracefully
data = NestedData.from_dict({'data': []})
print(repr(data)) # NestedData(my_str='default_value', my_int=0)
Looking to change how date
and datetime
objects are serialized to JSON? Or
prefer that field names appear in snake case when a dataclass instance is serialized?
The inner Meta
class allows easy configuration of such settings, as
shown below; and as a nice bonus, IDEs should be able to assist with code completion
along the way.
Note
As of v0.18.0, the Meta config for the main dataclass will cascade down
and be merged with the Meta config (if specified) of each nested dataclass. To
disable this behavior, you can pass in recursive=False
to the Meta config.
from dataclasses import dataclass
from datetime import date
from dataclass_wizard import JSONWizard
from dataclass_wizard.enums import DateTimeTo
@dataclass
class MyClass(JSONWizard):
class _(JSONWizard.Meta):
marshal_date_time_as = DateTimeTo.TIMESTAMP
key_transform_with_dump = 'SNAKE'
my_str: str
my_date: date
data = {'my_str': 'test', 'myDATE': '2010-12-30'}
c = MyClass.from_dict(data)
print(repr(c))
# prints:
# MyClass(my_str='test', my_date=datetime.date(2010, 12, 30))
string = c.to_json()
print(string)
# prints:
# {"my_str": "test", "my_date": 1293685200}
Here are a few additional use cases for the inner Meta
class. Note that
a full list of available settings can be found in the Meta section in the docs.
Added in v0.28.0
There is now Easier Debug Mode.
Enables additional (more verbose) log output. For example, a message can be
logged whenever an unknown JSON key is encountered when
from_dict
or from_json
is called.
This also results in more helpful error messages during the JSON load (de-serialization) process, such as when values are an invalid type -- i.e. they don't match the annotation for the field. This can be particularly useful for debugging purposes.
Note
There is a minor performance impact when DEBUG mode is enabled; for that reason, I would personally advise against enabling this in a production environment.
The default behavior is to ignore any unknown or extraneous JSON keys that are
encountered when from_dict
or from_json
is called, and emit a "warning"
which is visible when debug mode is enabled (and logging is properly configured).
An unknown key is one that does not have a known mapping to a dataclass field.
However, we can also raise an error in such cases if desired. The below example demonstrates a use case where we want to raise an error when an unknown JSON key is encountered in the load (de-serialization) process.
import logging
from dataclasses import dataclass
from dataclass_wizard import JSONWizard
from dataclass_wizard.errors import UnknownJSONKey
# Sets up application logging if we haven't already done so
logging.basicConfig(level='DEBUG')
@dataclass
class Container(JSONWizard):
class _(JSONWizard.Meta):
# True to enable Debug mode for additional (more verbose) log output.
#
# Pass in a `str` to `int` to set the minimum log level:
# logging.getLogger('dataclass_wizard').setLevel('INFO')
debug_enabled = logging.INFO
# True to raise an class:`UnknownJSONKey` when an unmapped JSON key is
# encountered when `from_dict` or `from_json` is called. Note that by
# default, this is also recursively applied to any nested dataclasses.
raise_on_unknown_json_key = True
element: 'MyElement'
@dataclass
class MyElement:
my_str: str
my_float: float
d = {
'element': {
'myStr': 'string',
'my_float': '1.23',
# Notice how this key is not mapped to a known dataclass field!
'my_bool': 'Testing'
}
}
# Try to de-serialize the dictionary object into a `MyClass` object.
try:
c = Container.from_dict(d)
except UnknownJSONKey as e:
print('Received error:', type(e).__name__)
print('Class:', e.class_name)
print('Unknown JSON key:', e.json_key)
print('JSON object:', e.obj)
print('Known Fields:', e.fields)
else:
print('Successfully de-serialized the JSON object.')
print(repr(c))
See the section on Handling Unknown JSON Keys for more info.
When calling from_dict
or from_json
, any unknown or extraneous JSON keys
that are not mapped to fields in the dataclass are typically ignored or raise an error.
However, you can capture these undefined keys in a catch-all field of type CatchAll
,
allowing you to handle them as needed later.
For example, suppose you have the following dictionary:
dump_dict = { "endpoint": "some_api_endpoint", "data": {"foo": 1, "bar": "2"}, "undefined_field_name": [1, 2, 3] }
You can save the undefined keys in a catch-all field and process them later.
Simply define a field of type CatchAll
in your dataclass. This field will act
as a dictionary to store any unmapped keys and their values. If there are no
undefined keys, the field will default to an empty dictionary.
from dataclasses import dataclass
from typing import Any
from dataclass_wizard import CatchAll, JSONWizard
@dataclass
class UnknownAPIDump(JSONWizard):
endpoint: str
data: dict[str, Any]
unknown_things: CatchAll
dump_dict = {
"endpoint": "some_api_endpoint",
"data": {"foo": 1, "bar": "2"},
"undefined_field_name": [1, 2, 3]
}
dump = UnknownAPIDump.from_dict(dump_dict)
print(f'{dump!r}')
# > UnknownAPIDump(endpoint='some_api_endpoint', data={'foo': 1, 'bar': '2'},
# unknown_things={'undefined_field_name': [1, 2, 3]})
print(dump.to_dict())
# > {'endpoint': 'some_api_endpoint', 'data': {'foo': 1, 'bar': '2'}, 'undefined_field_name': [1, 2, 3]}
Note
- When using a "catch-all" field, it is strongly recommended to define exactly one field of type
CatchAll
in the dataclass. LetterCase
transformations do not apply to keys stored in theCatchAll
field; the keys remain as they are provided.- If you specify a default (or a default factory) for the
CatchAll
field, such asunknown_things: CatchAll = None
, the default value will be used instead of an empty dictionary when no undefined parameters are present. - The
CatchAll
functionality is guaranteed only when usingfrom_dict
orfrom_json
. Currently, unknown keyword arguments passed to__init__
will not be written to aCatchAll
field.
As of v0.20.0, date and time strings in a custom format can be de-serialized
using the DatePattern
, TimePattern
, and DateTimePattern
type annotations,
representing patterned date, time, and datetime objects respectively.
This will internally call datetime.strptime
with the format specified in the annotation,
and also use the fromisoformat()
method in case the date string is in ISO-8601 format.
All dates and times will continue to be serialized as ISO format strings by default. For more
info, check out the Patterned Date and Time section in the docs.
A brief example of the intended usage is shown below:
from dataclasses import dataclass
from datetime import time, datetime
from typing import Annotated
from dataclass_wizard import fromdict, asdict, DatePattern, TimePattern, Pattern
@dataclass
class MyClass:
date_field: DatePattern['%m-%Y']
dt_field: Annotated[datetime, Pattern('%m/%d/%y %H.%M.%S')]
time_field1: TimePattern['%H:%M']
time_field2: Annotated[list[time], Pattern('%I:%M %p')]
data = {'date_field': '12-2022',
'time_field1': '15:20',
'dt_field': '1/02/23 02.03.52',
'time_field2': ['1:20 PM', '12:30 am']}
class_obj = fromdict(MyClass, data)
# All annotated fields de-serialize as just date, time, or datetime, as shown.
print(class_obj)
# MyClass(date_field=datetime.date(2022, 12, 1), dt_field=datetime.datetime(2023, 1, 2, 2, 3, 52),
# time_field1=datetime.time(15, 20), time_field2=[datetime.time(13, 20), datetime.time(0, 30)])
# All date/time fields are serialized as ISO-8601 format strings by default.
print(asdict(class_obj))
# {'dateField': '2022-12-01', 'dtField': '2023-01-02T02:03:52',
# 'timeField1': '15:20:00', 'timeField2': ['13:20:00', '00:30:00']}
# But, the patterned date/times can still be de-serialized back after
# serialization. In fact, it'll be faster than parsing the custom patterns!
assert class_obj == fromdict(MyClass, asdict(class_obj))
Prior to version v0.27.0, dataclasses with cyclic references or self-referential structures were not supported. This limitation is shown in the following toy example:
from dataclasses import dataclass
@dataclass
class A:
a: 'A | None' = None
a = A(a=A(a=A(a=A())))
This was a longstanding issue.
New in v0.27.0
: The Dataclass Wizard now extends its support
to cyclic and self-referential dataclass models.
The example below demonstrates recursive dataclasses with cyclic
dependencies, following the pattern A -> B -> A -> B
. For more details, see
the Cyclic or "Recursive" Dataclasses section in the documentation.
from __future__ import annotations # This can be removed in Python 3.10+
from dataclasses import dataclass
from dataclass_wizard import JSONWizard
@dataclass
class A(JSONWizard):
class _(JSONWizard.Meta):
# enable support for self-referential / recursive dataclasses
recursive_classes = True
b: 'B | None' = None
@dataclass
class B:
a: A | None = None
# confirm that `from_dict` with a recursive, self-referential
# input `dict` works as expected.
a = A.from_dict({'b': {'a': {'b': {'a': None}}}})
assert a == A(b=B(a=A(b=B())))
The dataclass-wizard
library fully supports declaring dataclass models in
Union types, such as list[Wizard | Archer | Barbarian]
.
Starting from v0.19.0, the library introduces two key features:
- Auto-generated tags for dataclass models (based on class names).
- A customizable tag key (default: __tag__
) that identifies the model in JSON.
These options are controlled by the auto_assign_tags
and tag_key
attributes in the Meta
config.
For example, if a JSON object looks like {"type": "A", ...}
, you can set tag_key = "type"
to automatically deserialize it into the appropriate class, like A.
Let's start out with an example, which aims to demonstrate the simplest usage of
dataclasses in Union
types. For more info, check out the
Dataclasses in Union Types section in the docs.
from __future__ import annotations
from dataclasses import dataclass
from dataclass_wizard import JSONWizard
@dataclass
class Container(JSONWizard):
class Meta(JSONWizard.Meta):
tag_key = 'type'
auto_assign_tags = True
objects: list[A | B | C]
@dataclass
class A:
my_int: int
my_bool: bool = False
@dataclass
class B:
my_int: int
my_bool: bool = True
@dataclass
class C:
my_str: str
data = {
'objects': [
{'type': 'A', 'my_int': 42},
{'type': 'C', 'my_str': 'hello world'},
{'type': 'B', 'my_int': 123},
{'type': 'A', 'my_int': 321, 'myBool': True}
]
}
c = Container.from_dict(data)
print(repr(c))
# Output:
# Container(objects=[A(my_int=42, my_bool=False),
# C(my_str='hello world'),
# B(my_int=123, my_bool=True),
# A(my_int=321, my_bool=True)])
print(c.to_dict())
# True
assert c == c.from_json(c.to_json())
What about untagged dataclasses in Union
types or |
syntax? With the major release V1 opt-in, dataclass-wizard
supercharges Union parsing, making it intuitive and flexible, even without tags.
This is especially useful for collections like list[Wizard]
or when tags (discriminators) are not feasible.
To enable this feature, opt in to v1 using the Meta
settings. For details, see the Field Guide to V1 Opt-in.
from __future__ import annotations # Remove in Python 3.10+
from dataclasses import dataclass
from typing import Literal
from dataclass_wizard import JSONWizard
@dataclass
class MyClass(JSONWizard):
class _(JSONWizard.Meta):
v1 = True # Enable v1 opt-in
v1_unsafe_parse_dataclass_in_union = True
literal_or_float: Literal['Auto'] | float
entry: int | MoreDetails
collection: list[MoreDetails | int]
@dataclass
class MoreDetails:
arg: str
# OK: Union types work seamlessly
c = MyClass.from_dict({
"literal_or_float": 1.23,
"entry": 123,
"collection": [{"arg": "test"}]
})
print(repr(c))
#> MyClass(literal_or_float=1.23, entry=123, collection=[MoreDetails(arg='test')])
# OK: Handles primitive and dataclass parsing
c = MyClass.from_dict({
"literal_or_float": "Auto",
"entry": {"arg": "example"},
"collection": [123]
})
print(repr(c))
#> MyClass(literal_or_float='Auto', entry=MoreDetails(arg='example'), collection=[123])
Added in v0.30.0
Dataclass Wizard introduces conditional skipping to omit fields during JSON serialization based on user-defined conditions. This feature works seamlessly with:
- Global rules via
Meta
settings. - Per-field controls using
SkipIf()
annotations. - Field wrappers for maximum flexibility.
- Globally Skip Fields Matching a Condition
Define a global skip rule using
Meta.skip_if
:from dataclasses import dataclass from dataclass_wizard import JSONWizard, IS_NOT @dataclass class Example(JSONWizard): class _(JSONWizard.Meta): skip_if = IS_NOT(True) # Skip fields if the value is not `True` my_bool: bool my_str: 'str | None' print(Example(my_bool=True, my_str=None).to_dict()) # Output: {'myBool': True}
- Skip Defaults Based on a Condition
Skip fields with default values matching a specific condition using
Meta.skip_defaults_if
:from __future__ import annotations # Can remove in PY 3.10+ from dataclasses import dataclass from dataclass_wizard import JSONPyWizard, IS @dataclass class Example(JSONPyWizard): class _(JSONPyWizard.Meta): skip_defaults_if = IS(None) # Skip default `None` values. str_with_no_default: str | None my_str: str | None = None my_bool: bool = False print(Example(str_with_no_default=None, my_str=None).to_dict()) #> {'str_with_no_default': None, 'my_bool': False}Note
Setting
skip_defaults_if
also enablesskip_defaults=True
automatically.
- Per-Field Conditional Skipping
Apply skip rules to specific fields with annotations or
skip_if_field
:from __future__ import annotations # can be removed in Python 3.10+ from dataclasses import dataclass from typing import Annotated from dataclass_wizard import JSONWizard, SkipIfNone, skip_if_field, EQ @dataclass class Example(JSONWizard): my_str: Annotated[str | None, SkipIfNone] # Skip if `None`. other_str: str | None = skip_if_field(EQ(''), default=None) # Skip if empty. print(Example(my_str=None, other_str='').to_dict()) # Output: {}
Skip Fields Based on Truthy or Falsy Values
Use the
IS_TRUTHY
andIS_FALSY
helpers to conditionally skip fields based on their truthiness:from dataclasses import dataclass, field from dataclass_wizard import JSONWizard, IS_FALSY @dataclass class ExampleWithFalsy(JSONWizard): class _(JSONWizard.Meta): skip_if = IS_FALSY() # Skip fields if they evaluate as "falsy". my_bool: bool my_list: list = field(default_factory=list) my_none: None = None print(ExampleWithFalsy(my_bool=False, my_list=[], my_none=None).to_dict()) #> {}
Note
Special Cases
- SkipIfNone: Alias for
SkipIf(IS(None))
, skips fields with a value ofNone
. - Condition Helpers:
IS
,IS_NOT
: Identity checks.EQ
,NE
,LT
,LE
,GT
,GE
: Comparison operators.IS_TRUTHY
,IS_FALSY
: Skip fields based on truthy or falsy values.
Combine these helpers for flexible serialization rules!
The following parameters can be used to fine-tune and control how the serialization of a
dataclass instance to a Python dict
object or JSON string is handled.
A common use case is skipping fields with default values - based on the default
or default_factory
argument to dataclasses.field
- in the serialization
process.
The attribute skip_defaults
in the inner Meta
class can be enabled, to exclude
such field values from serialization.The to_dict
method (or the asdict
helper
function) can also be passed an skip_defaults
argument, which should have the same
result. An example of both these approaches is shown below.
from collections import defaultdict
from dataclasses import field, dataclass
from dataclass_wizard import JSONWizard
@dataclass
class MyClass(JSONWizard):
class _(JSONWizard.Meta):
skip_defaults = True
my_str: str
other_str: str = 'any value'
optional_str: str = None
my_list: list[str] = field(default_factory=list)
my_dict: defaultdict[str, list[float]] = field(
default_factory=lambda: defaultdict(list))
print('-- Load (Deserialize)')
c = MyClass('abc')
print(f'Instance: {c!r}')
print('-- Dump (Serialize)')
string = c.to_json()
print(string)
assert string == '{"myStr": "abc"}'
print('-- Dump (with `skip_defaults=False`)')
print(c.to_dict(skip_defaults=False))
You can also exclude specific dataclass fields (and their values) from the serialization process. There are two approaches that can be used for this purpose:
- The argument
dump=False
can be passed in to thejson_key
andjson_field
helper functions. Note that this is a more permanent option, as opposed to the one below. - The
to_dict
method (or theasdict
helper function ) can be passed anexclude
argument, containing a list of one or more dataclass field names to exclude from the serialization process.
Additionally, here is an example to demonstrate usage of both these approaches:
from dataclasses import dataclass
from typing import Annotated
from dataclass_wizard import JSONWizard, json_key, json_field
@dataclass
class MyClass(JSONWizard):
my_str: str
my_int: int
other_str: Annotated[str, json_key('AnotherStr', dump=False)]
my_bool: bool = json_field('TestBool', dump=False)
data = {'MyStr': 'my string',
'myInt': 1,
'AnotherStr': 'testing 123',
'TestBool': True}
print('-- From Dict')
c = MyClass.from_dict(data)
print(f'Instance: {c!r}')
# dynamically exclude the `my_int` field from serialization
additional_exclude = ('my_int',)
print('-- To Dict')
out_dict = c.to_dict(exclude=additional_exclude)
print(out_dict)
assert out_dict == {'myStr': 'my string'}
Easily map environment variables to Python dataclasses with EnvWizard
:
import os
from dataclass_wizard import EnvWizard
# Set up environment variables
os.environ.update({
'APP_NAME': 'Env Wizard',
'MAX_CONNECTIONS': '10',
'DEBUG_MODE': 'true'
})
# Define dataclass using EnvWizard
class AppConfig(EnvWizard):
app_name: str
max_connections: int
debug_mode: bool
# Load config from environment variables
config = AppConfig()
print(config.app_name) #> Env Wizard
print(config.debug_mode) #> True
assert config.max_connections == 10
# Override with keyword arguments
config = AppConfig(app_name='Dataclass Wizard Rocks!', debug_mode='false')
print(config.app_name) #> Dataclass Wizard Rocks!
assert config.debug_mode is False
Note
EnvWizard
simplifies environment variable mapping with type validation, .env
file support, and secret file handling (file names become keys).
Key Features:
- Auto Parsing: Supports complex types and nested structures.
- Configurable: Customize variable names, prefixes, and dotenv files.
- Validation: Errors for missing or malformed variables.
EnvWizard
supports dynamic prefix application, ideal for customizable environments:
import os
from dataclass_wizard import EnvWizard, env_field
# Define dataclass with custom prefix support
class AppConfig(EnvWizard):
class _(EnvWizard.Meta):
env_prefix = 'APP_' # Default prefix for env vars
name: str = env_field('A_NAME') # Looks for `APP_A_NAME` by default
debug: bool
# Set environment variables
os.environ['CUSTOM_A_NAME'] = 'Test!'
os.environ['CUSTOM_DEBUG'] = 'yes'
# Apply a dynamic prefix at runtime
config = AppConfig(_env_prefix='CUSTOM_') # Looks for `CUSTOM_A_NAME` and `CUSTOM_DEBUG`
print(config)
# > AppConfig(name='Test!', debug=True)
The Python dataclasses
library has some key limitations
with how it currently handles properties and default values.
The dataclass-wizard
package natively provides support for using
field properties with default values in dataclasses. The main use case
here is to assign an initial value to the field property, if one is not
explicitly passed in via the constructor method.
To use it, simply import
the property_wizard
helper function, and add it as a metaclass on
any dataclass where you would benefit from using field properties with
default values. The metaclass also pairs well with the JSONSerializable
mixin class.
For more examples and important how-to's on properties with default values, refer to the Using Field Properties section in the documentation.
v1 Opt-in Now Available
Early opt-in for v1 is now available with enhanced features, including intuitive Union
parsing and optimized performance. To enable this,
set v1=True
in your Meta
settings.
For more details and migration guidance, see the Field Guide to V1 Opt-in.
Warning
Default Key Transformation Update
Starting with
v1.0.0
, the default key transformation for JSON serialization will change to keep keys as-is instead of converting them to camelCase.New Default Behavior:
key_transform='NONE'
will be the standard setting.How to Prepare: You can enforce this future behavior right now by using the
JSONPyWizard
helper:from dataclasses import dataclass from dataclass_wizard import JSONPyWizard @dataclass class MyModel(JSONPyWizard): my_field: str print(MyModel(my_field="value").to_dict()) # Output: {'my_field': 'value'}
Float to Int Conversion Change
Starting in
v1.0
, floats or float strings with fractional parts (e.g.,123.4
or"123.4"
) will no longer be silently converted to integers. Instead, they will raise an error. However, floats with no fractional parts (e.g.,3.0
or"3.0"
) will still convert to integers as before.How to Prepare: To ensure compatibility with the new behavior: - Use
float
annotations for fields that may include fractional values. - Review your data and avoid passing fractional values (e.g.,123.4
) to fields annotated asint
. - Update tests or logic that rely on the current rounding behavior.
Contributions are welcome! Open a pull request to fix a bug, or open an issue to discuss a new feature or change.
Check out the Contributing section in the docs for more info.
All feature ideas or suggestions for future consideration, have been currently added as milestones in the project's GitHub repo.
This package was created with Cookiecutter and the rnag/cookiecutter-pypackage project template.