SageMaker Spark is an open source Spark library for Amazon SageMaker. With SageMaker Spark you construct Spark ML Pipeline
s using Amazon SageMaker stages. These pipelines interleave native Spark ML stages and stages that interact with SageMaker training and model hosting.
With SageMaker Spark, you can train on Amazon SageMaker from Spark DataFrame
s using Amazon-provided ML algorithms
like K-Means clustering or XGBoost, and make predictions on DataFrame
s against
SageMaker endpoints hosting your trained models, and, if you have your own ML algorithms built
into SageMaker compatible Docker containers, you can use SageMaker Spark to train and infer on DataFrame
s with your
own algorithms -- all at Spark scale.
- Getting SageMaker Spark
- Running SageMaker Spark
- Getting Started: K-Means Clustering on SageMaker with SageMaker Spark SDK
- Example: Using SageMaker Spark with Any SageMaker Algorithm
- Example: Using SageMakerEstimator and SageMakerModel in a Spark Pipeline
- Example: Using Multiple SageMakerEstimators and SageMakerModels in a Spark Pipeline
- Example: Creating a SageMakerModel
- Example: Tearing Down Amazon SageMaker Endpoints
- Configuring an IAM Role
- SageMaker Spark: In-Depth
- License
SageMaker Spark for Scala is available in the Maven central repository:
<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>sagemaker-spark_2.11</artifactId>
<version>spark_2.2.0-1.0</version>
</dependency>
Or, if your project depends on Spark 2.1:
<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>sagemaker-spark_2.11</artifactId>
<version>spark_2.1.1-1.0</version>
</dependency>
You can also build SageMaker Spark from source. See sagemaker-spark-sdk for more on building SageMaker Spark from source.
See the sagemaker-pyspark-sdk for more on installing and running SageMaker PySpark.
SageMaker Spark depends on hadoop-aws-2.8.1. To run Spark applications that depend on SageMaker Spark, you need to build Spark with Hadoop 2.8. However, if you are running Spark applications on EMR, you can use Spark built with Hadoop 2.7.
Apache Spark currently distributes binaries built against Hadoop-2.7, but not 2.8. See the Spark documentation for more on building Spark with Hadoop 2.8.
SageMaker Spark needs to be added to both the driver and executor classpaths.
You can submit SageMaker Spark and the AWS Java Client as dependencies with the "--jars" flag, or take a dependency on SageMaker Spark in Maven using the "--package" flag.
- Install Hadoop-2.8. https://hadoop.apache.org/docs/r2.8.0/
- Build Spark 2.2 with Hadoop-2.8. The Spark documentation has guidance on building Spark with your own Hadoop installation.
- Run
spark-shell
orspark-submit
with the--packages
flag:
spark-shell --packages com.amazonaws:sagemaker-spark_2.11:spark_2.2.0-1.0
You can run SageMaker Spark applications on an EMR cluster just like any other Spark application by submitting your Spark application jar and the SageMaker Spark dependency jars with the --jars or --packages flags.
SageMaker Spark is pre-installed on EMR releases since 5.11.0. You can run your SageMaker Spark application on EMR by submitting your Spark application jar and any additional dependencies your Spark application uses.
SageMaker Spark applications have also been verified to be compatible with EMR-5.6.0 (which runs Spark 2.1) and EMR-5-8.0
(which runs Spark 2.2). When submitting your Spark application to an earlier EMR release, use the --packages
flag to
depend on a recent version of the AWS Java SDK:
spark-submit
--packages com.amazonaws:aws-java-sdk:1.11.613 \
--deploy-mode cluster \
--conf spark.driver.userClassPathFirst=true \
--conf spark.executor.userClassPathFirst=true \
--jars SageMakerSparkApplicationJar.jar,...
...
The spark.driver.userClassPathFirst=true
and spark.executor.userClassPathFirst=true
properties are required so that
the Spark cluster will use the AWS Java SDK dependencies with SageMaker, rather than the AWS Java SDK installed on these
earlier EMR clusters.
For more on running Spark application on EMR, see the EMR Documentation on submitting a step.
See the sagemaker-pyspark-sdk for more on installing and running SageMaker PySpark.
EMR allows you to read and write data using the EMR FileSystem (EMRFS), accessed through Spark with "s3://":
spark.read.format("libsvm").load("s3://my-bucket/my-prefix")
In other execution environments, you can use the S3A schema to use the S3A FileSystem "s3a://" to read and write data:
spark.read.format("libsvm").load("s3a://my-bucket/my-prefix")
In the code examples in this README, we use "s3://" to use the EMRFS, or "s3a://" to use the S3A system, which is recommended over "s3n://".
You can view the Scala API Documentation for SageMaker Spark here.
You can view the PySpark API Documentation for SageMaker Spark here.
This example walks through using SageMaker Spark to train on a Spark DataFrame using a SageMaker-provided algorithm, host the resulting model on SageMaker Spark, and making predictions on a Spark DataFrame using that hosted model.
We'll cluster handwritten digits in the MNIST dataset, which we've made available in LibSVM format at
s3://sagemaker-sample-data-us-east-1/spark/mnist/train/mnist_train.libsvm
.
You can start a Spark shell with SageMaker Spark
spark-shell --packages com.amazonaws:sagemaker-spark_2.11:spark_2.1.1-1.0
- Create your Spark Session and load your training and test data into DataFrames:
val spark = SparkSession.builder.getOrCreate
// load mnist data as a dataframe from libsvm. replace this region with your own.
val region = "us-east-1"
val trainingData = spark.read.format("libsvm")
.option("numFeatures", "784")
.load(s"s3://sagemaker-sample-data-$region/spark/mnist/train/")
val testData = spark.read.format("libsvm")
.option("numFeatures", "784")
.load(s"s3://sagemaker-sample-data-$region/spark/mnist/test/")
The DataFrame
consists of a column named "label" of Doubles, indicating the digit for each example,
and a column named "features" of Vectors:
trainingData.show
+-----+--------------------+
|label| features|
+-----+--------------------+
| 5.0|(784,[152,153,154...|
| 0.0|(784,[127,128,129...|
| 4.0|(784,[160,161,162...|
| 1.0|(784,[158,159,160...|
| 9.0|(784,[208,209,210...|
| 2.0|(784,[155,156,157...|
| 1.0|(784,[124,125,126...|
| 3.0|(784,[151,152,153...|
| 1.0|(784,[152,153,154...|
| 4.0|(784,[134,135,161...|
| 3.0|(784,[123,124,125...|
| 5.0|(784,[216,217,218...|
| 3.0|(784,[143,144,145...|
| 6.0|(784,[72,73,74,99...|
| 1.0|(784,[151,152,153...|
| 7.0|(784,[211,212,213...|
| 2.0|(784,[151,152,153...|
| 8.0|(784,[159,160,161...|
| 6.0|(784,[100,101,102...|
| 9.0|(784,[209,210,211...|
+-----+--------------------+
- Construct a
KMeansSageMakerEstimator
, which extendsSageMakerEstimator
, which is a SparkEstimator
. You need to pass in an Amazon SageMaker-compatible IAM Role that Amazon SageMaker will use to make AWS service calls on your behalf (or configure SageMaker Spark to get this from Spark Config). Consult the API Documentation for a complete list of parameters.
In this example, we are setting the "k" and "feature_dim" hyperparameters, corresponding to the number of clusters we want and to the number of dimensions in our training dataset, respectively.
// Replace this IAM Role ARN with your own.
val roleArn = "arn:aws:iam::account-id:role/rolename"
val estimator = new KMeansSageMakerEstimator(
sagemakerRole = IAMRole(roleArn),
trainingInstanceType = "ml.p2.xlarge",
trainingInstanceCount = 1,
endpointInstanceType = "ml.c4.xlarge",
endpointInitialInstanceCount = 1)
.setK(10).setFeatureDim(784)
- To train and host your model, call
fit()
on your trainingDataFrame
:
val model = estimator.fit(trainingData)
What happens in this call to fit()
?
-
SageMaker Spark serializes your
DataFrame
and uploads the serialized training data to S3. For the K-Means algorithm, SageMaker Spark converts theDataFrame
to the Amazon Record format. SageMaker Spark will create an S3 bucket for you that your IAM role can access if you do not provide an S3 Bucket in the constructor. -
SageMaker Spark sends a
CreateTrainingJobRequest
to Amazon SageMaker to run a Training Job with onep2.xlarge
on the data in S3, configured with the values you pass in to theSageMakerEstimator
, and polls for completion of the Training Job. In this example, we are sending a CreateTrainingJob request to run a k-means clustering Training Job on Amazon SageMaker on serialized data we uploaded from yourDataFrame
. When training completes, the Amazon SageMaker service puts a serialized model in an S3 bucket you own (or the default bucket created by SageMaker Spark). -
After training completes, SageMaker Spark sends a
CreateModelRequest
, aCreateEndpointConfigRequest
, and aCreateEndpointRequest
and polls for completion, each configured with the values you pass in to the SageMakerEstimator. This Endpoint will initially be backed by onec4.xlarge
. -
To make inferences using the Endpoint hosting our model, call
transform()
on theSageMakerModel
returned byfit()
.
val transformedData = model.transform(testData)
transformedData.show
+-----+--------------------+-------------------+---------------+
|label| features|distance_to_cluster|closest_cluster|
+-----+--------------------+-------------------+---------------+
| 5.0|(784,[152,153,154...| 1767.897705078125| 4.0|
| 0.0|(784,[127,128,129...| 1392.157470703125| 5.0|
| 4.0|(784,[160,161,162...| 1671.5711669921875| 9.0|
| 1.0|(784,[158,159,160...| 1182.6082763671875| 6.0|
| 9.0|(784,[208,209,210...| 1390.4002685546875| 0.0|
| 2.0|(784,[155,156,157...| 1713.988037109375| 1.0|
| 1.0|(784,[124,125,126...| 1246.3016357421875| 2.0|
| 3.0|(784,[151,152,153...| 1753.229248046875| 4.0|
| 1.0|(784,[152,153,154...| 978.8394165039062| 2.0|
| 4.0|(784,[134,135,161...| 1623.176513671875| 3.0|
| 3.0|(784,[123,124,125...| 1533.863525390625| 4.0|
| 5.0|(784,[216,217,218...| 1469.357177734375| 6.0|
| 3.0|(784,[143,144,145...| 1736.765869140625| 4.0|
| 6.0|(784,[72,73,74,99...| 1473.69384765625| 8.0|
| 1.0|(784,[151,152,153...| 944.88720703125| 2.0|
| 7.0|(784,[211,212,213...| 1285.9071044921875| 3.0|
| 2.0|(784,[151,152,153...| 1635.0125732421875| 1.0|
| 8.0|(784,[159,160,161...| 1436.3162841796875| 6.0|
| 6.0|(784,[100,101,102...| 1499.7366943359375| 7.0|
| 9.0|(784,[209,210,211...| 1364.6319580078125| 6.0|
+-----+--------------------+-------------------+---------------+
In this call to transform()
, the SageMakerModel
serializes chunks of the input DataFrame
and sends them to the
Endpoint using the SageMakerRuntime InvokeEndpoint
API. The SageMakerModel
deserializes the Endpoint's responses,
which contain predictions, and appends the prediction columns to the input DataFrame
.
The SageMakerEstimator
is an org.apache.spark.ml.Estimator
that trains a model on Amazon SageMaker.
SageMaker Spark provides several classes that extend SageMakerEstimator
to run particular algorithms, like KMeansSageMakerEstimator
to run the SageMaker-provided k-means algorithm, or XGBoostSageMakerEstimator
to run the SageMaker-provided XGBoost
algorithm. These classes are just SageMakerEstimator
s with certain default values passed in. You can use SageMaker Spark with
any algorithm that runs on Amazon SageMaker by creating a SageMakerEstimator.
Instead of creating a KMeansSageMakerEstimator, you can create an equivalent SageMakerEstimator:
val estimator = new SageMakerEstimator(
trainingImage =
"382416733822.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
modelImage =
"382416733822.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
requestRowSerializer = new ProtobufRequestRowSerializer(),
responseRowDeserializer = new KMeansProtobufResponseRowDeserializer(),
hyperParameters = Map("k" -> "10", "feature_dim" -> "784"),
sagemakerRole = IAMRole(roleArn),
trainingInstanceType = "ml.p2.xlarge",
trainingInstanceCount = 1,
endpointInstanceType = "ml.c4.xlarge",
endpointInitialInstanceCount = 1,
trainingSparkDataFormat = "sagemaker")
trainingImage
identifies the Docker registry path to the training image containing your custom code. In this case, this points to the us-east-1 k-means image.modelImage
identifies the Docker registry path to the image containing inference code. Amazon SageMaker k-means uses the same image to train and to host trained models.requestRowSerializer
implementscom.amazonaws.services.sagemaker.sparksdk.transformation.RequestRowSerializer
. ARequestRowSerializer
serializesorg.apache.spark.sql.Row
s in the inputDataFrame
to send them to the model hosted in Amazon SageMaker for inference. This is passed to the SageMakerModel returned byfit
. In this case, we pass in aRequestRowSerializer
that serializesRow
s to the Amazon Record protobuf format. See Serializing and Deserializing for Inference for more information on how SageMaker Spark makes inferences.responseRowDeserializer
Implementscom.amazonaws.services.sagemaker.sparksdk.transformation.ResponseRowDeserializer
. AResponseRowDeserializer
deserializes responses containing predictions from the Endpoint back into columns in aDataFrame
.hyperParameters
is aMap[String, String]
that thetrainingImage
will use to set training hyperparameters.trainingSparkDataFormat
specifies the data format that Spark uses when uploading training data from aDataFrame
to S3.
SageMaker Spark needs the trainingSparkDataFormat to tell Spark how to write the DataFrame to S3 for the trainingImage
to
train on. In this example, "sagemaker" tells Spark to write the data as
RecordIO-encoded Amazon Records, but your own algorithm may take another data format.
You can pass in any format that Spark supports as long as your trainingImage
can train using that data format,
such as "csv", "parquet", "com.databricks.spark.csv", or "libsvm."
SageMaker Spark also needs a RequestRowSerializer
to serialize Spark Row
s to a
data format the modelImage
can deserialize, and a ResponseRowDeserializer
to deserialize responses that contain
predictions from the modelImage
back into Spark Row
s. See Serializing and Deserializing for Inference
for more details.
SageMakerEstimator
s and SageMakerModel
s can be used in Pipeline
s. In this
example, we run org.apache.spark.ml.feature.PCA
on our Spark cluster, then train and infer using Amazon SageMaker's
K-Means on the output column from PCA
:
val pcaEstimator = new PCA()
.setInputCol("features")
.setOutputCol("projectedFeatures")
.setK(50)
val kMeansSageMakerEstimator = new KMeansSageMakerEstimator(
sagemakerRole = IAMRole(roleArn),
requestRowSerializer =
new ProtobufRequestRowSerializer(featuresColumnName = "projectedFeatures"),
trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectedFeatures"),
trainingInstanceType = "ml.p2.xlarge",
trainingInstanceCount = 1,
endpointInstanceType = "ml.c4.xlarge",
endpointInitialInstanceCount = 1)
.setK(10).setFeatureDim(50)
val pipeline = new Pipeline().setStages(Array(pcaEstimator, kMeansSageMakerEstimator))
// train
val pipelineModel = pipeline.fit(trainingData)
val transformedData = pipelineModel.transform(testData)
transformedData.show()
+-----+--------------------+--------------------+-------------------+---------------+
|label| features| projectedFeatures|distance_to_cluster|closest_cluster|
+-----+--------------------+--------------------+-------------------+---------------+
| 5.0|(784,[152,153,154...|[880.731433034386...| 1500.470703125| 0.0|
| 0.0|(784,[127,128,129...|[1768.51722024166...| 1142.18359375| 4.0|
| 4.0|(784,[160,161,162...|[704.949236329314...| 1386.246826171875| 9.0|
| 1.0|(784,[158,159,160...|[-42.328192193771...| 1277.0736083984375| 5.0|
| 9.0|(784,[208,209,210...|[374.043902028333...| 1211.00927734375| 3.0|
| 2.0|(784,[155,156,157...|[941.267714528850...| 1496.157958984375| 8.0|
| 1.0|(784,[124,125,126...|[30.2848596410594...| 1327.6766357421875| 5.0|
| 3.0|(784,[151,152,153...|[1270.14374062052...| 1570.7674560546875| 0.0|
| 1.0|(784,[152,153,154...|[-112.10792566485...| 1037.568359375| 5.0|
| 4.0|(784,[134,135,161...|[452.068280676606...| 1165.1236572265625| 3.0|
| 3.0|(784,[123,124,125...|[610.596447285397...| 1325.953369140625| 7.0|
| 5.0|(784,[216,217,218...|[142.959601818422...| 1353.4930419921875| 5.0|
| 3.0|(784,[143,144,145...|[1036.71862533658...| 1460.4315185546875| 7.0|
| 6.0|(784,[72,73,74,99...|[996.740157435754...| 1159.8631591796875| 2.0|
| 1.0|(784,[151,152,153...|[-107.26076167417...| 960.963623046875| 5.0|
| 7.0|(784,[211,212,213...|[619.771820430940...| 1245.13623046875| 6.0|
| 2.0|(784,[151,152,153...|[850.152101817161...| 1304.437744140625| 8.0|
| 8.0|(784,[159,160,161...|[370.041887230547...| 1192.4781494140625| 0.0|
| 6.0|(784,[100,101,102...|[546.674328209335...| 1277.0908203125| 2.0|
| 9.0|(784,[209,210,211...|[-29.259112927426...| 1245.8182373046875| 6.0|
+-----+--------------------+--------------------+-------------------+---------------+
requestRowSerializer = new ProtobufRequestRowSerializer(featuresColumnName = "projectedFeatures")
tells theSageMakerModel
returned byfit()
to infer on the features in the "projectedFeatures" columntrainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectedFeatures")
tells theSageMakerProtobufWriter
that Spark is using to write theDataFrame
as format "sagemaker" to serialize the "projectedFeatures" column when writing Amazon Records for training.
We can use multiple SageMakerEstimator
s and SageMakerModel
s in a pipeline. Here, we use
SageMaker's PCA algorithm to reduce a dataset with 50 dimensions to a dataset with 20 dimensions, then
use SageMaker's K-Means algorithm to train on the 20-dimension data.
val pcaEstimator = new PCASageMakerEstimator(sagemakerRole = IAMRole(sagemakerRole),
trainingInstanceType = "ml.p2.xlarge",
trainingInstanceCount = 1,
endpointInstanceType = "ml.c4.xlarge",
endpointInitialInstanceCount = 1
responseRowDeserializer = new PCAProtobufResponseRowDeserializer(
projectionColumnName = "projectionDim20"),
trainingInputS3DataPath = S3DataPath(trainingBucket, inputPrefix),
trainingOutputS3DataPath = S3DataPath(trainingBucket, outputPrefix),
endpointCreationPolicy = EndpointCreationPolicy.CREATE_ON_TRANSFORM)
.setNumComponents(20).setFeatureDim(50)
val kmeansEstimator = new KMeansSageMakerEstimator(sagemakerRole = IAMRole(sagemakerRole),
trainingInstanceType = "ml.p2.xlarge",
trainingInstanceCount = 1,
endpointInstanceType = "ml.c4.xlarge",
endpointInitialInstanceCount = 1
trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectionDim20"),
requestRowSerializer = new ProtobufRequestRowSerializer(
featuresColumnName = "projectionDim20"),
responseRowDeserializer = new KMeansProtobufResponseRowDeserializer(),
trainingInputS3DataPath = S3DataPath(trainingBucket, inputPrefix),
trainingOutputS3DataPath = S3DataPath(trainingBucket, outputPrefix),
endpointCreationPolicy = EndpointCreationPolicy.CREATE_ON_TRANSFORM)
.setK(10).setFeatureDim(20)
val pipeline = new Pipeline().setStages(Array(pcaEstimator, kmeansEstimator))
val model = pipeline.fit(dataset)
// For expediency, transforming the training dataset:
val transformedData = model.transform(dataset)
transformedData.show()
+-----+--------------------+--------------------+-------------------+---------------+
|label| features| projectionDim20|distance_to_cluster|closest_cluster|
+-----+--------------------+--------------------+-------------------+---------------+
| 1.0|[-0.7927307,-11.2...|[5.50362682342529...| 45.03189468383789| 1.0|
| 1.0|[-3.762671,-5.853...|[-2.1558122634887...| 41.79889678955078| 1.0|
| 1.0|[-2.0988898,-2.40...|[4.53881502151489...| 50.824703216552734| 1.0|
| 1.0|[-2.81075,-3.6481...|[0.97894239425659...| 52.78211975097656| 1.0|
| 1.0|[-2.14356,-4.0369...|[2.25758934020996...| 48.99141311645508| 1.0|
| 1.0|[-5.3773708,-15.3...|[-3.2523036003112...| 21.99374771118164| 1.0|
| 1.0|[-1.0369565,-16.5...|[-17.643878936767...| 29.127044677734375| 3.0|
| 1.0|[-2.019725,-3.226...|[1.41068196296691...| 51.7830696105957| 1.0|
| 1.0|[-4.3821997,-0.98...|[-0.8335087299346...| 53.921058654785156| 1.0|
| 1.0|[-7.075208,-34.31...|[11.4329795837402...| 35.12031173706055| 3.0|
| 1.0|[-3.90454,-4.8401...|[-1.4304646253585...| 50.00594711303711| 1.0|
| 1.0|[0.9607103,-13.50...|[1.13785743713378...| 28.71956443786621| 1.0|
| 1.0|[-4.5025017,-15.2...|[2.66747045516967...| 25.419822692871094| 1.0|
| 1.0|[0.041773,-27.148...|[7.58121681213378...| 30.303693771362305| 3.0|
| 1.0|[-10.1477266,-39....|[-12.086886405944...| 35.9030647277832| 2.0|
| 1.0|[-3.09143,-6.4892...|[1.79180252552032...| 39.34271240234375| 1.0|
| 1.0|[-13.5285917,-32....|[7.62783145904541...| 35.040035247802734| 2.0|
| 1.0|[-4.189806,-16.04...|[1.41141772270202...| 25.123626708984375| 1.0|
| 1.0|[-12.77831508,-62...|[0.11281073093414...| 63.91242599487305| 2.0|
| 1.0|[-9.3934507,-12.5...|[-9.4945802688598...| 20.913305282592773| 1.0|
+-----+--------------------+--------------------+-------------------+---------------+
responseRowDeserializer = new PCAProtobufResponseRowDeserializer( projectionColumnName = "projectionDim20")
tells theSageMakerModel
attached to the PCA endpoint to deserialize responses (which contain the lower-dimensional projections of the features vectors) into the column named "projectionDim20"endpointCreationPolicy = EndpointCreationPolicy.CREATE_ON_TRANSFORM
tells theSageMakerEstimator
to delay SageMaker Endpoint creation until it is needed to transform aDataFrame
.trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectionDim20"), requestRowSerializer = new ProtobufRequestRowSerializer( featuresColumnName = "projectionDim20")
these lines tell theKMeansSageMakerEstimator
to respectively train and infer on the features in the "projectionDim20" column.
SageMaker Spark supports attaching SageMakerModel
s to an existing SageMaker endpoint, or to an Endpoint created by
reference to model data in S3, or to a previously completed Training Job.
This allows you to use SageMaker Spark just for model hosting and inference on Spark-scale DataFrame
s without running
a new Training Job.
You can attach a SageMakerModel
to an endpoint that has already been created. Supposing an endpoint with name
"my-endpoint-name" is already in service and hosting a SageMaker K-Means model:
val model = SageMakerModel
.fromEndpoint(endpointName = "my-endpoint-name",
requestRowSerializer = new ProtobufRequestRowSerializer(
featuresColumnName = "MyFeaturesColumn"),
responseRowDeserializer = new KMeansProtobufResponseRowDeserializer(
distanceToClusterColumnName = "DistanceToCluster",
closestClusterColumnName = "ClusterLabel"
))
This SageMakerModel
will, upon a call to transform()
, serialize the column named
"MyFeaturesColumn" for inference, and append the columns "DistanceToCluster" and "ClusterLabel" to the DataFrame
.
You can create a SageMakerModel and an Endpoint by referring directly to your model data in S3:
val model = SageMakerModel
.fromModelS3Path(modelPath = "s3://my-model-bucket/my-model-data/model.tar.gz",
modelExecutionRoleARN = "arn:aws:iam::account-id:role/rolename"
modelImage = 382416733822.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
endpointInstanceType = "ml.c4.xlarge",
endpointInitialInstanceCount = 1
requestRowSerializer = new ProtobufRequestRowSerializer(),
responseRowDeserializer = new KMeansProtobufResponseRowDeserializer()
)
You can create a SageMakerModel and an Endpoint by referring to a previously-completed training job:
val model = SageMakerModel
.fromTrainingJob(trainingJobName = "my-training-job-name",
modelExecutionRoleARN = "arn:aws:iam::account-id:role/rolename"
modelImage = 382416733822.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
endpointInstanceType = "ml.c4.xlarge",
endpointInitialInstanceCount = 1
requestRowSerializer = new ProtobufRequestRowSerializer(),
responseRowDeserializer = new KMeansProtobufResponseRowDeserializer()
)
SageMaker Spark provides a utility for deleting Endpoints created by a SageMakerModel:
val sagemakerClient = AmazonSageMakerClientBuilder.defaultClient
val cleanup = new SageMakerResourceCleanup(sagemakerClient)
cleanup.deleteResources(model.getCreatedResources)
SageMaker Spark allows you to add your IAM Role ARN to your Spark Config so that you don't have to keep passing in
IAMRole("arn:aws:iam::account-id:role/rolename")
.
Add an entry to your Spark Config with key com.amazonaws.services.sagemaker.sparksdk.sagemakerrole
whose value is your
Amazon SageMaker-compatible IAM Role. SageMakerEstimator
will look for this role if it is not supplied in the constructor.
KMeansSageMakerEstimator
, PCASageMakerEstimator
, and LinearLearnerSageMakerEstimator
all serialize DataFrame
s
to the Amazon Record protobuf format with each Record encoded in
RecordIO.
They do this by passing in "sagemaker" to the trainingSparkDataFormat
constructor argument, which configures Spark
to use the SageMakerProtobufWriter
to serialize Spark DataFrame
s.
Writing a DataFrame
using the "sagemaker"
format serializes a column named "label", expected to contain
Double
s, and a column named "features", expected to contain a Sparse or Dense org.apache.mllib.linalg.Vector
.
If the features column contains a SparseVector
, SageMaker Spark sparsely-encodes the Vector
into the Amazon Record.
If the features column contains a DenseVector
, SageMaker Spark densely-encodes the Vector
into the Amazon Record.
You can choose which columns the SageMakerEstimator
chooses as its "label" and "features" columns by passing in
a trainingSparkDataFormatOptions
Map[String, String]
with keys "labelColumnName" and "featuresColumnName" and with
values corresponding to the names of your chosen label and features columns.
You can also write Amazon Records using SageMaker Spark by using the "sagemaker" format directly:
myDataFrame.write
.format("sagemaker")
.option("labelColumnName", "myLabelColumn")
.option("featuresColumnName", "myFeaturesColumn")
.save("s3://my-s3-bucket/my-s3-prefix")
By default, SageMakerEstimator
deletes the RecordIO-encoded Amazon Records in S3 following training on Amazon
SageMaker. You can choose to allow the data to persist in S3 by passing in deleteStagingDataAfterTraining = true
to
SageMakerEstimator
.
See the AWS Documentation on Amazon Records for more information on Amazon Records.
SageMakerEstimator.fit()
returns a SageMakerModel
, which transforms a DataFrame
by calling InvokeEndpoint
on
an Amazon SageMaker Endpoint. InvokeEndpointRequest
s carry serialized Row
s as their payload.Row
s in the DataFrame
are serialized for predictions against an Endpoint using a RequestRowSerializer
. Responses from an Endpoint containing
predictions are deserialized into Spark Row
s and appended as columns in a DataFrame
using a ResponseRowDeserializer.
Internally, SageMakerModel.transform
calls mapPartitions
to distribute the work
of serializing Spark Row
s, constructing and sending InvokeEndpointRequest
s to an Endpoint, and deserializing
InvokeEndpointResponse
s across a Spark cluster. Because each InvokeEndpointRequest
can carry only 5MB, each
Spark partition creates a
com.amazonaws.services.sagemaker.sparksdk.transformation.util.RequestBatchIterator
to iterate over its partition,
sending prediction requests to the Endpoint in 5MB increments.
RequestRowSerializer.serializeRow()
converts a Row
to an Array[Byte]
.
The RequestBatchIterator
appends these byte arrays to
form the request body of an InvokeEndpointRequest
.
For example, the
com.amazonaws.services.sagemaker.sparksdk.transformation.ProtobufRequestRowSerializer
creates one
RecordIO-encoded Amazon Record per input row by serializing the "features" column in each row, and wrapping each
Amazon Record in the RecordIO header.
ResponseRowDeserializer.deserializeResponse()
converts an Array[Byte]
containing predictions from an Endpoint to
an Iterator[Row]
to appends columns containing these predictions to the DataFrame
being transformed by the
SageMakerModel
.
For comparison, SageMaker's XGBoost uses LibSVM-formatted data for inference (as well as training), and responds with a comma-delimited list of predictions.
Accordingly, SageMaker Spark uses com.amazonaws.services.sagemaker.sparksdk.transformation.LibSVMRequestRowSerializer
to serialize rows into LibSVM-formatted data, and uses com.amazonaws.services.sagemaker.sparksdk.transformation.XGBoostCSVResponseRowDeserializer
to deserialize the response into a column of predictions.
To support your own model image's data formats for inference, you can implement your own RequestRowSerializer
and ResponseRowDeserializer
.
SageMaker Spark is licensed under Apache-2.0.