Discussion:Paradoxe des deux enfants
- Admissibilité
- Neutralité
- Droit d'auteur
- Article de qualité
- Bon article
- Lumière sur
- À faire
- Archives
- Commons
L'archivage des anciennes discussions est disponible ici
Du calme et du sang froid :-)
[modifier le code]Bonjour, je vois que les débats sont passionnés.
Plutôt que de parler tout de suite du contenu de l'article actuel et de ses versions précédentes, quelques petites questions aux différents intervenants.
- l'énoncé du paradoxe est imprécis et c'est bien ce qui conduit au paradoxe : il n'y a ni bonne ni mauvaise réponse.
- en précisant l'énoncé dans un sens, on valide le raisonnement du prof.
- en précisant l'énoncé dans un autre sens, on valide le raisonnement de l'élève.
Est ce que tout le monde est d'accord avec ces 3 phrases, ou pas ?
Je vous propose de laisser tomber pour le moment les parties accessoires de l'article (Simplicio, l'obstétricien, Hall, Stanley Milgram, le changement des probas 51%-49%, ainsi que le complément (2-p)/(4-p)). On verra ces points par la suite, une fois qu'on aura un coeur d'article ou il y a un consensus.
- Simplicio, l'obstétricien: c'est ce que j'ai fait en les écartant de la discussion. Toutefois
- obstétricien montre que l'apprehension du problème depend du contexte
- Simplicio montre l'aspect approximatif de l'énoncé.
- Hall permet de mieux faire comprendre (et visiblement c'est nécessaire) la cause profonde de la divergence d'interprétation.
- complément (2-p)/(4-p) : a la relecture, je m'apercois que ce passage (que j'avais hativement transfere) est baclé (les retouches de HB n'ont rien amélioré). En l'état, j'ai préféré le mettre en commentaire.
- "Analyse statistique" : cela m'apporte rien (c'est de la redite). je ne l'ai conservé que par ce qu'il faut être concilliant. <STyx @
HDDTZUZDSQ 15 juin 2006 à 14:32 (CEST)
- pour moi pas de problème, sauf les intitulés prof - élève auquel je préfèrerais une version plus neutre : interprétation a interprétation b par exemple (ou mieux, si on trouve plus joli)HB 15 juin 2006 à 15:12 (CEST)
- je crois que sur le fond il y a consensus. Les propos de HB montre seulement qu'il a eu une lecture trop rapide de l'article (qui manquait un peu d'explications complémentaires et été trop concis dans sa conclusion) et qu'il a du mal à appréhender les choses en profondeur. <STyx @ 15 juin 2006 à 17:40 (CEST)
- Non mais franchement, comment vous faites pour supporter ce genre de commentaires?Salle 16 juin 2006 à 10:03 (CEST)
- Oui, ca serait pas mal si tout le monde s'abstenait de faire des [[[Wikipédia:Attaques personnelles]] pendant cette phase ou on essaie de trouver un consensus. HDDTZUZDSQ 16 juin 2006 à 10:36 (CEST)
plan
[modifier le code]- Bon, si tout le monde est d'accord sur le fond, c'est déjà pas mal. On se souviendra donc qu'il n'y a pas de bonne ou mauvaise réponse à l'idée initiale. De là, je vous propose de faire un plan ici Discuter:Paradoxe des deux enfants/Plan consensuel de l'article. (on fera ensuite des copier-coller pour le contenu à partir des différentes version). En fait, est-ce qu'on garde le plan actuel ? HB, qu'est ce que vous pensez du plan actuel ? Il faudrait sans doute mettre les 4 réponses sur le même plan (prof, eleve, simplicio, et l'obstétricien), et détailler seulement le raisonnement du prof. Actuellement les réponses de simplicio et de l'obstétricien ne sont pas au même niveau que les deux premières ? HDDTZUZDSQ 15 juin 2006 à 17:51 (CEST)
- Réponse HB : Il ne me semble pas que les quatre réponses soient à mettre sur le même plan. Je pense que STyx ne me contredira pas si je dis que les réponses 1/2 et 1/3 sont celles qui correspondent au paradoxe (s'il te plait évite les termes réponse prof -réponse élève) les autres sont là pour montrer la variabilité des réponses possibles. Je verrai bien une phrase d'accroche pour présenter la question et indiquer que souvent deux réponses contradictoires sont données. Ensuite, oui, pourquoi pas, le développement de la réponse Académique (on peut trouver un autre mot) si STyx est d'accord et enfin l'analyse du pourquoi du paradoxe (et c'est là que se trouve le noeud du problème). HB 15 juin 2006 à 18:22 (CEST)
- Ok, ça me semble pas mal. Peux-tu mettre ton plan dans Discuter:Paradoxe des deux enfants/Plan consensuel de l'article ? (sans mettre d'explications pour le moment, juste les titres et sous-titres). Ca me semble d'ailleurs peu éloigné du plan actuel de la version de Styx. Styx, tu nous diras si le plan de HB est ok. (juste le plan pour le moment, pas la rédaction finale). HDDTZUZDSQ 15 juin 2006 à 18:35 (CEST)
- Bon c'est fait. L'intitulé des titres est provisoire . Ils indiquent seulement le contenu des diverses parties (on peut surement trouver mieux). HB 15 juin 2006 à 18:56 (CEST)
- Bon, si tout le monde est d'accord sur le fond, c'est déjà pas mal. On se souviendra donc qu'il n'y a pas de bonne ou mauvaise réponse à l'idée initiale. De là, je vous propose de faire un plan ici Discuter:Paradoxe des deux enfants/Plan consensuel de l'article. (on fera ensuite des copier-coller pour le contenu à partir des différentes version). En fait, est-ce qu'on garde le plan actuel ? HB, qu'est ce que vous pensez du plan actuel ? Il faudrait sans doute mettre les 4 réponses sur le même plan (prof, eleve, simplicio, et l'obstétricien), et détailler seulement le raisonnement du prof. Actuellement les réponses de simplicio et de l'obstétricien ne sont pas au même niveau que les deux premières ? HDDTZUZDSQ 15 juin 2006 à 17:51 (CEST)
- « Il faudrait sans doute mettre les 4 réponses sur le même plan » : c'est fait (dans un premier temps)
- presenter d'emblèe la 4 reponses presente l'avantage d'ouvrir l'esprit du lecteur. Or c'est bien le manque d'ouverture d'esprit qui rend les articles sur les paradoxes si problématiques <STyx @
- « Actuellement les réponses de simplicio et de l'obstétricien ne sont pas au même niveau que les deux premières ? » : c'est normal car « Le paradoxe, tel qu'il est connu, ne porte que sur la divergence de point de vue entre l'élève et le professeur. » <STyx @
- il est important de se débarrasser de la partie calculatoire (ce que fait "Quelles sont les probabilités en présence ?") qui ne pose pas de problème pour aborder la partie "interpretation semantique" plus sainement.
- il faut ne pas separe les 2 interpretations ; mais au contraire, les comparer. <STyx @ 15 juin 2006 à 19:17 (CEST)
Avant de tout chambouler, j'aimerais savoir ce qu'il y a à redire sur l'article en l'etat actuel (hormis la terminologie prof, eleve, simplicio, et l'obstétricien) <STyx @ 15 juin 2006 à 19:11 (CEST)
terminologie
[modifier le code]- la terminologie « prof, eleve » est certe maladroite, car elle me place pas les 2 interpretation sur un pied d'egalité. mais semble donner un ascendant à l'interpretation du prof. De plus elle place le problème dans un contexte scolaire.
- parler de réponse Académique serait pire. <STyx @ 15 juin 2006 à 19:26 (CEST)
- Bon, HB soulevait aussi la question de terminologie. Perso, je pense qu'il est bien de nommer avec des noms plutôt que des lettres (Reponse A, Reponse B est un peu austère), mais il semble que la terminologie prof/élève apporte effectivement une confusion : dans l'imaginaire de chacun, c'est forcément le prof qui a raison, et ça déroute lecteur. Qu'est ce qu'on pourrait mettre à la place ?
- Styx : je suis bien d'accord. j'ai déjà proposé de reprendre Galilée : Filippo (Filippo Salviati), Francesco (Giovan Francesco Sagredo) et Simplicio (Simplicius de Cilicie) <STyx @
- HB : le problème est de justifier un développement préalable de la réponse 1/3 avant l'analyse sémantique; Pourquoi pas alors Une solution à l'aide des probabilités conditionnelle?
- Qu'en disait les ouvrages de math ? Le mieux est encore de reprendre un ouvrage de math (de vulgarisation quand même, pas un ouvrage de math spécialisé), et citez la source. HDDTZUZDSQ 15 juin 2006 à 19:28 (CEST)
- STyx : dans un contexte math. la prof a raison. En fait il a raison en cours, mais pas forcement dans la rue (où son point de vue est minoritaire). <STyx @ 15 juin 2006 à 19:49 (CEST)
- HB : Les ouvrages de math se gardent bien de poser un énoncé aussi ambigu. Je ne trouve aucune trace de cette question dans les bouquins de math que je possède. HB 15 juin 2006 à 20:03 (CEST)
Proposition de STyx : Est-ce que la proposition de Styx de remplacer par les noms Filippo, Francesco et Simplicio serait acceptable ? HDDTZUZDSQ 15 juin 2006 à 20:10 (CEST)
- HB : oui pourqoi pas HB 15 juin 2006 à 20:39 (CEST)
- Un intru: Pourquoi diable quitter la neutralité de point de vue? Chez Galilée, dans son Discours sur les deux sciences nouvelles, Simplicio est un individu stupide qui défend d'ailleurs mal des thèses fausses car il est bourré d'a priori et Filippo a toujours raison et prouve par l'expérience l'inanité des idées préconçues. Le paradoxe met en évidence la nécessité de clarté dans un énoncé et non le danger des idées préconçues. Comme le fait remarquer HB, il n'y a pas une vérité mathématique et une vérité de la rue, mais un énoncé ambigu qu'évite tout matheux sérieux, une référence dans un cours de maths me semble donc difficile sauf comme exemple de ce qu'il ne faut pas faire. Jean-Luc W 16 juin 2006 à 01:25 (CEST)
Contreproposition de HB un : On peut proposer des prénonms neutres qui ne renvoient pas à un contexte historique (Philippe et François par exemple). HB 16 juin 2006 à 17:06 (CEST)
Contreproposition de HB deux On peut parler du raisonnement un tiers et du raisonnement un demi. HB 16 juin 2006 à 17:06 (CEST).
- Cela me semble peut-être d'une rédaction moins claire pour le lecteur, et est un peu plus long à rédiger et à lire ? De plus, que deviendra le raisonnement simplicio ? HDDTZUZDSQ 17 juin 2006 à 20:41 (CEST)
Proposition d'allègement
[modifier le code]Il me semble que tout le paragraphe Question de probas ou de sémantiques? peut se résumer en un passage :
En réalité, la différence d'interprétation porte sur une question de précédence entre la "détermination" de l'un et l'autre et l'information « l'un est un garçon » : Pour l'élève, chaque enfant est d'abord désigné sous le terme l'un et l'autre ; puis, l'information « l'un est un garçon » est donnée. La précision est alors : ... l'un « préalablement déterminé » ... Pour le professeur, l'information « l'un est un garçon » "détermine" qui sont l'un et l'autre. La précision est alors : ... l'un « est choisi de sorte que : il »
Tout le reste n'est que reformulation de ce passage qui me semble à peu près clair. La répétition est certes la base de l'enseignement, mais sur un support écrit, elle est remplacée par la relecture. Il me semble que l'article pourrait se présenter ainsi : 1) énoncé ; les deux raisonnements et leurs ocnclusions contradictoires. 2)Interprétation des deux raisonnements (avec le passage ci-dessus) 3) s'il le faut vraimentl'écriture algorithmique et variables aléatoires des deux raisonnements
Ensuite, on peut intégrer les variantes si on veut, mais ça ne me semble pas nécessaire.
Par ailleurs, je trouve également que faire intervenir des profs et des élèves est non neutre ; et le remplacement par les personnages proposés ne me paraît pas pertinent : je ne vois pas en quoi cela vient éclairer le discours. Enfin, je signale que la valeur fille est représentée par 0, et la valeur garçon par 1 : est-ce bien neutre ? Salle 16 juin 2006 à 10:01 (CEST)
- Vous proposriez quoi ? HDDTZUZDSQ 16 juin 2006 à 10:36 (CEST)
- avis de HB : Je me range volontier à cette proposition . Il me semble que l'algorithmique et les variables aléatoires apportent plus de confusion que d'éclaircissement et peuvent être zappées. Les variantes, on peut les mettre ou pas selon la taille de l'article. Qu'en pense STyx ? (qui n'a pas encore donné son avis ni sur la proposition en page annexe ni sur cette proposition.) . HB 16 juin 2006 à 17:00 (CEST)
- avis de Jean-Luc W: Je me range aussi à cette proposition, le message devient plus clair. Mon seul bémol à la vision de Salle est que garçon fille ne me gène pas (mais je n'ai aucune aversion à une modification dans le sens de Salle). Jean-Luc W 17 juin 2006 à 01:07 (CEST)
- Heu, garçon-fille, c'était une blague.Salle 17 juin 2006 à 11:26 (CEST)
- Oui, mais c'est vrai que finalement c'est intéressant car c'est neutre, plutot que les professeur/élève, simplicio, etc, qui induise le lecteur à penser que l'une des propositions a plus de légitimité que l'autre. Styx, que pensez-vous de cette idée ? HDDTZUZDSQ 17 juin 2006 à 11:29 (CEST)
- Je crois qu'il y a confusion HDDTZUZDSQ, Salle faisait une blague sur le fait que fille était noté 0 et garçon 1. Proposer fille et garçon pour les deux versions n'est pas plus neutre quand on sait le problème social existant entre les filles et les mathématiques. Voir mes deux autres propositions plus haut. D'autre part, pourrais-tu relancer STyx qui ne répond plus depuis deux jours.HB 17 juin 2006 à 11:54 (CEST)
- Faudra rappeller combien de fois que la mathématique est féminine? Bourbaki 17 juin 2006 à 18:59 (CEST)
- Oula oula oula, svp, un conflit à la fois. :-) HDDTZUZDSQ 17 juin 2006 à 20:28 (CEST)
- Faudra rappeller combien de fois que la mathématique est féminine? Bourbaki 17 juin 2006 à 18:59 (CEST)
- Je crois qu'il y a confusion HDDTZUZDSQ, Salle faisait une blague sur le fait que fille était noté 0 et garçon 1. Proposer fille et garçon pour les deux versions n'est pas plus neutre quand on sait le problème social existant entre les filles et les mathématiques. Voir mes deux autres propositions plus haut. D'autre part, pourrais-tu relancer STyx qui ne répond plus depuis deux jours.HB 17 juin 2006 à 11:54 (CEST)
- Oui, mais c'est vrai que finalement c'est intéressant car c'est neutre, plutot que les professeur/élève, simplicio, etc, qui induise le lecteur à penser que l'une des propositions a plus de légitimité que l'autre. Styx, que pensez-vous de cette idée ? HDDTZUZDSQ 17 juin 2006 à 11:29 (CEST)
- Heu, garçon-fille, c'était une blague.Salle 17 juin 2006 à 11:26 (CEST)
Etonnants débats
[modifier le code]Je suis prof de maths, j'ai demandé à tous (14) les collègues de français que je connaissais quel sens ils donnaient à "l'un d'eux est un garçon" et la réponse a été unanime c'est "l'un au moins", qui est le sens que tous les mathématiciens ont toujours pris pour cet énoncé. L'éducation nationale va bien mal qui emploie tant de professeurs incompétents. J'ai également demandé à mes élèves. L'honnêteté m'oblige à dire que sur 47 élèves interrogés, 14 ont répondu "l'un exactement" mais aucun "le premier" et donc 33 "l'un au moins". Il faudra aussi signaler à tous les mathématiciens qui n'ont jamais vu quelque difficulté d'interprétation que ce soit dans cet énoncé qu'ils se sont tous trompés. Un prof de maths surpris et consterné par cette page. ylemeur (cherchez mon adresse mail effacée dans l'historique de la page)
- il faut vraiment avoir une lecture bien rapide de l'article, pour ne pas se rendre compte que le débat portait sur les interprétations prof/élève et non sur celle de Simplicio - qualifiée de marginale (quoique 14 / 47, ce n'est pas si marginal) <STyx @ 19 juin 2006 à 17:44 (CEST)
- Peut-on donner une source à cette interprétation de simplicio ? Cet article manque de source ... Il ne faudrait pas tomber dans les travaux inédits ... HDDTZUZDSQ 19 juin 2006 à 21:10 (CEST)
- Une source serait effectivement bienvenue. Mais existe-t-elle ? Parce que cette page de Wikipedia est quand même le seul endroit que je connaisse où ce problème simple est qualifié de paradoxe et où cette solution de 1/2 est envisagée comme correcte. ylemeur
premier point
[modifier le code]De tous ces débats, il me semble que :
- tout le monde est d'accord sur le fond de l'article (ie: il y a consensus pour considérer que l'énoncé du paradoxe n'a ni bonne, ni mauvaise réponse)
- tout le monde est d'accord pour dire que les noms actuels sont imparfaits (prof/élève), de plus qu'il me semble que tout le monde est d'accord également pour reconnaître qu'il n'y a pas une réponse à privilégier par rapport à une autre. De là, tout le monde est ok pour remplacer par des prénoms. Styx propose des noms tiré d'un exemple de Gallilé, mais on relève que "Simplicio" n'est pas neutre non plus. HB propose des prénoms français courants. Ce point me semble mineur à régler. Styx, que pensez-vous de la proposition d'HB, peut-être un peu plus neutre et pédagogique par rapport à des noms italiens dont l'un est d'un usage trop évocateur ? (Deuxième alternative proposé par HB: proposer "raisonnement un tiers" et du "raisonnement un demi")
- « selon le raisonnement zero, ... », c'est lourd. Je prefere « selon simplicio, ... » <STyx @ 19 juin 2006 à 19:11 (CEST)
- sur le fond, le mot "raisonnement" me déplait, (je prefere "thèse" ou "interpretation") <STyx @ 19 juin 2006 à 19:11 (CEST)
- Question peut-être plus délicate : le plan de l'article. Merci de commenter et de proposer dans Discuter:Paradoxe des deux enfants/Plan consensuel de l'article. Styx peut-il donner son avis sur celui là ? Inversement, HB peut il préciser ce qui le gène le plus dans le plan de l'article actuel ? On synthétisera la tout dans Discuter:Paradoxe des deux enfants/Plan consensuel de l'article
Franchement, il me semble qu'il n'y a pas de difficultés majeures à surmonter et qu'on peut trouver facilement un compromis qui aboutisse rapidement à un coeur d'article clair, pédagogique et neutre. (Jean Luc W, Salle, et d'autres wikipédiens qui passeraient peuvent donner aussi leurs avis, bien sûr ! :-)
HDDTZUZDSQ 17 juin 2006 à 20:39 (CEST)
- J'ai fait mes commentaires dans Discuter:Paradoxe des deux enfants/Plan consensuel de l'article mais je pense que notre différent porte davantage sur le contenu de la section probabilité et sémantique. HB 18 juin 2006 à 11:07 (CEST)
- (à nouveau) Avant de tout chambouler, j'aimerais savoir ce qu'il y a à redire sur l'article en l'etat actuel (hormis la terminologie prof, eleve, simplicio, et l'obstétricien) <STyx @ 19 juin 2006 à 19:11 (CEST)
- Ok, HB, que reprochez vous au plan actuel de l'article ? Styx, pouvez-vous donner aussi votre avis sur la page Discuter:Paradoxe des deux enfants/Plan consensuel de l'article ? HDDTZUZDSQ 19 juin 2006 à 21:11 (CEST)
- j'ai répondu deux lignes plus haut !!! les commentaires et un bilan des différentes propositions était dans Discuter:Paradoxe des deux enfants/Plan consensuel de l'article . Mais comme je l'ai dit plus bas, je laisse l'article se noyer tout seul. HB 19 juin 2006 à 21:25 (CEST)
- Ok, HB, que reprochez vous au plan actuel de l'article ? Styx, pouvez-vous donner aussi votre avis sur la page Discuter:Paradoxe des deux enfants/Plan consensuel de l'article ? HDDTZUZDSQ 19 juin 2006 à 21:11 (CEST)
Les filles sont pas des 0!
[modifier le code]Comme c'est un point mineur, je me suis permis de remplacer 0 et 1 par F et G.
Notez, si vous tenez vraiment aux chiffres, je suggère 1 pour les garçons, 2 pour les filles: cf numéros sécu. À moins qu'un fan de génétique insiste pour X et Y. Bourbaki 18 juin 2006 à 19:17 (CEST)
- tu ne tient pas compte de "Interprétation algorithmique" <STyx @ 19 juin 2006 à 18:19 (CEST)
- Bon, et est-ce qu'il est vraiment impossible d'utiliser autre chose que des 1 et des 0 dans cet algo? Bourbaki 19 juin 2006 à 18:51 (CEST)
- il ne faut pas employer des majuscules pour des valeur (confusion avec les v.a.) <STyx @ 19 juin 2006 à 19:41 (CEST)
- Est-ce que quelqu'un pourrait trouver un texte de références sur ce paradoxe ? Qui l'a formulé, etc ? J'ai l'impression qu'il y a des parties où tout le monde s'est fait un peu plaisir et qui contreviennent à la politique Wikipédia:Travail inédit HDDTZUZDSQ 19 juin 2006 à 21:13 (CEST)
Tuile ! Évaporation du consensus
[modifier le code]Désolé de briser le consensus existant, je préfère le faire vite (je lirai en détail les vieilles archives de discussion) mais je ne souscris pas du tout à l'opinion résumée par le Wikipompier de service (c'est par la page Wikipompiers que j'ai été attiré ici...) selon laquelle «tout le monde est d'accord sur le fond de l'article (ie: il y a consensus pour considérer que l'énoncé du paradoxe n'a ni bonne, ni mauvaise réponse)».
Au risque d'être un peu brutal, je dirai que selon moi 1) cet article est mauvais 2) l'article similaire de la Wikipedia anglophone est excellent et que la solution que je préconiserais (sans m'y risquer brutalement, je suis conscient qu'elle ne sera pas tout à fait consensuelle :-)) serait de remplacer l'article actuel par une traduction de l'article anglais.
Un doute sérieux : dans quelle mesure cet article est-il de la recherche originale et dans quelle mesure reprend-il des sources consultables dans des revues ou livres ? J'ai cliqué sur un seul des liens (celui qui n'est pas pdf) du commentaire du 10 mai (en souriant, puisqu'il s'agit des mises en ligne d'un collègue (actuellement retraité) [1] ) ... et suis tombé sur quelque chose qui me va tout à fait, disons qui est sans doute un peu trop formalisé mathématiquement pour en faire le seul contenu d'un article grand public, mais qui ne met pas dos à dos la solution juste et la solution fausse.
Donc une question avant de continuer. Quelles sources pour les paragraphes qui me font le plus tiquer, typiquement le 3-2 et le 4 ? Il me serait plus confortable et je trouverais plus courtois de les descendre au nom de «pas de recherche originale» qu'en disant pourquoi sur le fond je préconise leur suppression. (Et de toutes façons il me faudrait alors relire toutes les pages de discussion préalables pour échapper au risque de redites).
Voilà c'est tout ce que j'ai à dire en urgence, je repasserai bien sûr, mais je ne voudrais pas qu'une version prétendue «consensuelle» stabilise l'article dans un état proche de ce qu'il est actuellement. Touriste 19 juin 2006 à 21:14 (CEST)
- de consensus, il n'y en a plus de ma part. je suis allée à la limite du compromis sans voir Styx faire un quelconque effort de sa part. Désolée pour HDDTZUZDSQ. Je ne m'épuiserai pas dvantage à discuter vainement en essayant remettre de l'ordre dans des discussions où tout le monde perd le fil. Je soutiendrai évidemment toute proposition venant des intervenants comme touriste Jean Luc, Salle. Bon courage à vous. HB 19 juin 2006 à 21:23 (CEST)
- Question à Touriste : « qui ne met pas dos à dos la solution juste et la solution fausse. » Je n'ai pas compris ce que vous entendez par là ? HDDTZUZDSQ 19 juin 2006 à 21:24 (CEST)
- Pour moi il y a une réponse JUSTE à savoir la réponse 1/3 (voir la page anglophone qui trouve 2/3 en posant le problème "à l'envers"), une réponse notoirement fausse (1/2) et des réponses anecdotiques (la "réponse de l'obstétricien" n'est d'ailleurs pas inintéressante, et est mentionnée indirectement dans la version anglophone, dans une présentation plus sobre). Un bon article doit PRIORITAIREMENT donner et expliquer la réponse juste ; plusieurs explications sont possibles dont aucune n'est évidemment la bonne - en gros on peut utiliser les formules de probabilités conditionnelles, comme dans le 2-2 de l'article, ou faire un peu de comptage comme dans l'article anglophone. Les deux se défendent, un bon article pourrait donner les deux points de vue et on peut discuter de savoir dans quel ordre ils doivent s'articuler ; ou on peut préférer en donner un seul. Ce n'est pas le sujet des débats, si c'était simplement ça on trouverait vite un consensus.
- Quant à la solution FAUSSE (1/2), le choix de l'article anglophone (ne pas en parler) n'est pas déraisonnable. Si l'article prétend la justifier, je dis simplement (et en majuscules) NON !!! Si on veut en proposer une réfutation, pourquoi pas c'est raisonnable, mais là gare au «pas de recherche originale». Des dizaines de sources doivent en avoir trouvé des présentations fort pédagogiques, alignons nous sur l'une d'entre elles, ne réinventons pas la roue.
- Pour en revenir aux questions posées par notre vaillant pompier (à son débarquement du 15 juin), espérant clarifier ma position, je réponds simplement «pas d'accord» aux trois. Touriste 19 juin 2006 à 21:38 (CEST)
- Ah bin nous voilà bien. :-) Bon, je retiens le caractère anecdotique de certaines réponses. Je ne sais pas comment faire maintenant pour faire avancer le débat. Je propose que quelqu'un trouve une source vérifiable, qui explicite le concept, et qu'on arrête les travaux inédits. (Sur le fond, tel que j'avais compris le problème, il me semblait bien que l'énoncé n'est pas clair, d'où les deux réponses possibles, ni bonne ni mauvaise puisque l'énoncé est volontairement flou pour laisser l'ambiguité. J'ai du mal à comprendre votre position là dessus d'ailleurs). HDDTZUZDSQ 19 juin 2006 à 21:48 (CEST)
- L'article anglais est pas mal, il a le mérite d'être simple et clair. Par contre il ne parle pas de réponse bonne, ni de réponse fausse, justement ? HDDTZUZDSQ 19 juin 2006 à 21:51 (CEST)
- Tout à fait la réponse dite "de l'élève" dans l'article français n'est même pas évoquée par l'article anglais. La fraction "1/2" apparait dans celui-ci mais comme réponse à une AUTRE question, celle qui contient le mot "ainé", question que l'article francophone refuse d'évoquer au nom de "l'âge du capitaine" (sic...) Touriste 19 juin 2006 à 21:56 (CEST)
- Bon l'article anglais est clair parce qu'ils posent distinctement les deux questions. Donc c'est facile. L'article français a proposé un énoncé flou exprès, et appelé ça un paradoxe. Bon, le mieux serait vraiment de trouver la formulation originale, et de s'y tenir. HDDTZUZDSQ 19 juin 2006 à 22:07 (CEST)
- Je ne suis pas sur que la question française soit "floue" : son énoncé « Sachant qu'une famille a deux enfants et que l'un d'eux est un garçon, quelle est la probabilité que l'autre soit un garçon aussi ? » ressemble tout de même de très près à la deuxième version de la question en anglais (celle du paragraphe 4 : «Given that we have a two-child family with at least one boy, what is the chance that the boy has a sister?»
- Certes l'absence d'un mot français équivalant au "at least" permet de faire apparaître la solution 3) mais c'est selon moi anecdotique ; en tout état de cause le français "Sachant" correpond bien à l'anglais "Given". Mais bon si ça aide à ménager des susceptibilités de modifier l'énoncé de la question française en le remplaçant par une traduction de la question du paragraphe 1 de la version anglaise, aucune objection de ma part. Touriste 19 juin 2006 à 22:12 (CEST)
- Bin en fait je trouve le texte anglais flou aussi :-) (C'est bien au moins je suis cohérent). L'énoncé particularise le garçon. the boy. Et donc c'est flou. Si il particularise, on a tendance a penser : ok il y a LE garçon, donc ca fait 1/2 chance pour l'autre. Pas si clair que ça finalement l'article anglais. (Bon en fait, c'est simplement dans leur paragraphe "another point de vue sur le problème", qui me semble apporter plus de confusions que d'éclaircissements. Enfin, on est pas là pour réécrire l'article anglais non plus. :-) HDDTZUZDSQ 19 juin 2006 à 22:34 (CEST)
- Bon l'article anglais est clair parce qu'ils posent distinctement les deux questions. Donc c'est facile. L'article français a proposé un énoncé flou exprès, et appelé ça un paradoxe. Bon, le mieux serait vraiment de trouver la formulation originale, et de s'y tenir. HDDTZUZDSQ 19 juin 2006 à 22:07 (CEST)
- Tout à fait la réponse dite "de l'élève" dans l'article français n'est même pas évoquée par l'article anglais. La fraction "1/2" apparait dans celui-ci mais comme réponse à une AUTRE question, celle qui contient le mot "ainé", question que l'article francophone refuse d'évoquer au nom de "l'âge du capitaine" (sic...) Touriste 19 juin 2006 à 21:56 (CEST)
Aujourd'hui, soyons constructif !
[modifier le code]Et voilà j'ai écrit ce qui peut être une nouvelle base de travail (non wikifiée, passage à formules non écrit...) pour reprendre à zéro la page, on la trouvera à Utilisateur:Touriste/Paradoxe des deux enfants.
Voici en gros les principales différences de philosophie avec l'article actuel :
- ma version détaille la solution "juste", en utilisant à ce niveau une traduction de l'article anglophone, dont le formalisme me paraît agréablement compréhensible à des débutants ;
- comme l'article anglophone, ma version évoque aussi la question concernant l'"ainé" ce qui est une version classique du problème (dans sa version actuelle de l'article, l'évocation n'est que très évasive)
- la version que je propose cite aussi la version "avec prénom" de Delahaye, inconnue tant de l'article actuel que de l'article anglophone, et qui est pourtant assez amusante et instructive
- je n'ai pas complètement fait disparaître les considérations assez volumineuses de l'article actuel sur les "autres solutions" du premier problème, mais ai beaucoup beaucoup coupé et réécrit ça à ma façon. Touriste 20 juin 2006 à 11:34 (CEST)
Voilà une solution qui me plait bien. Les avantages sont , à mes yeux, les suivants:
- L'article explicite clairement les enjeux sans présenter des résultats faux ou polémiques quand aux interprétations.
- Il est exhaustif et montre comment les différentes hypothèses influent sur le résultats.
- Il est rédigé
- Il satisfera probablement beaucoup de monde comme HB, Salle touriste ou moi-même.
Qu'en penses STyx ? Jean-Luc W 21 juin 2006 à 00:09 (CEST)
C'est très bien d'avoir mis une source. HDDTZUZDSQ 21 juin 2006 à 00:33 (CEST)
- Il y avait une thèse dans l'article initial, qui n'existe plus ici ; je n'aimais pas l'artickle, mais la thèse me convenait : c'était, un énoncé en langage commun, non formalisé mathématiquement, est susceptible de plusieurs interprétations, entre lesquelles il est difficile de trancher. La version de Touriste abandonne cette idée ; alors, certes, son article n'est pas désagréable comme l'était celui de STyx ; certes, la thèse que j'ai énoncée est peut-être difficilement sourçable ; mais il me semble quand même qu'on a perdu quelque chose.Salle 21 juin 2006 à 13:34 (CEST)
- Plus précisément : tout le monde se met à parler de résultats faux ou justes, et de résultats vrais à mettre en valeur ; il me semble qu'on perd de vue que le résultat est de toutes façons trivial, et ne mériterait meme pas un exercice niveau lycée ; alors, de là à en faire un article encyclopédique... Le seul intéret, pour moi, c'était justement d'élucider cette difficulté d'interprétation ; certains commencent à prétendre qu'elle n'existe pas, peut-etre, mais j'en doute : à lier avec tous les débats aux temps antiques des probabilités, avant Fermat : n'y avait-il pas des désaccords entre de grands esprits justement parce qu'ils modélisaient mal des situations réelles, parce qu'ils interprétaient mal? S'il n'y a effectivement pas de difficulté d'interprétation, il faut supprimer l'article ; s'il y a difficulté, on l'élucide (quelques phrases suffisent), et on s'arrete là. Mais foin des variantes et autres, il n'y a pas matière encyclopédique là-dedans, tout au plus de petits exos. Je pense que la remarque s'étend à beaucoup d'articles sur les paradoxes probabilistes.
- Je reviens aussi sur ce que j'ai dit à propos du texte de Touriste ; les articles de Delahaye ne constituent pas des références adéquates, il en a déjà été question ailleurs ; et les variantes proposées ne sont pas très intéressantes, en plus d'etre très sujettes à caution : on peut remettre en question ses interprétations des variantes, encore plus clairement qu'on le pouvait pour la question initiale.Salle 21 juin 2006 à 17:18 (CEST)
- Voilà, j'ai finalement rédigé ma petite version à moi. Il me semble qu'elle contient ce qui est le plus pertinent, et que ce qui n'y est pas ne manque pas. C'est mon avis, rien de plus, hein?
- Finalement, je reviens sur ce que j'ai dit sur la variante de Touriste, à propos du foot et du badminton ; l'exemple du changemanet de probas avec l'info qui fait du badminton est effectivement frappant.Salle 21 juin 2006 à 18:07 (CEST)
- Je jette un oeil rapide, etant occupe a faire du ...tourisme... ces jours-ci. Je suis reserve sur la mise en relief de la solution "en 1/2" au probleme (dans sa version simple) : ce n' est pas cette possibilite d' erreur qui fait le charme de ce paradoxe mais (selon moi) la modification du resultat par les infos additionnelles. Mais bon le brouillon que tu proposes a par ailleurs le charme de la brievete et je souligne tout de suite qu'il me parait aussi tres preferable a l'article dans sa version actuelle. J' insiste encore une fois sur le fait que la version anglaise ne mentionne meme pas cette solution en "1/2" (bon d' accord elle ne mentionne pas non plus la version evoluee avec info complementaire). Autrement OK pour chercher une source plus traditionnelle que Delahaye, mais je n' en ai pas sous la main personnellement... Touriste 22 juin 2006 apres-midi.
- Personnellement, j'ai comme HB passé assez de temps là-dessus. Je laisse à Touriste par exemple le soin de tenir compte ou non de mes remarques, et je lui fais confiance pour faire quelque chose d'honnête et d'équilibré ; étant persuadé de toutes façons que ce qu'il produira sera nettement meilleur que la version actuelle.Salle 22 juin 2006 à 18:10 (CEST)
- Je suis plus sensible au charme de l'article de touriste, qui préfère comme axe d'analyse la variation de la proba en fonction de l'info fourni, je trouve le sujet plus pertinent. J'ajoute cependant que c'est une question de goût car les maigres sources trouvées ne peuvent servir de référence comme le remarque Salle. Donc je n'ai pas d'argment tranché, permettant de choisir une deux versions. Biensur je partage l'opinion de HB, Touriste Salle ou Alain R pour qualifier l'article actuel de, disons pour ne pas être polémique, largement inférieur aux deux proposés. Je me propose de faire une enquête auprès de la communauté mathématique. De toute manière chacune des deux solutions me semble être en mesure d'arrêter ce scandale étrange en mathématiques, qui est une guerre d'édition. Jean-Luc W 23 juin 2006 à 16:48 (CEST)
J'ai lu l'article anglais; il me semble très critiquable. Pour la formulation "Given that we have a two-child family with at least one boy, what is the chance that the boy has a sister", il donne la réponse 2/3 ce qui est pour le moins discutable. Je considère que c'est trop ambigu, mais si on me demande de trancher je réponds 1/2 en considérant qu'il s'agit de trouver la probabilité d'avoir une soeur quand on tire au hasard un garçon d'une famille de deux enfants (c'est-à-dire tirage au sort selon les enfants et non selon les familles).
- Peut-être alors devriez vous lire plus attentivement la phrase dont une traduction littérale donne "étant donné que nous avons UNE FAMILLE de deux enfants avec au moins un garçon, quelle est la probabilitié que le garçon ait une soeur", je ne vois donc pas comment vous pouvez y lire "on tire au hasard un garçon ". Ceci étant dit, où en est Touriste de sa proposition qui recueille de nombreux avis favorables? Peut-il insister un peu plus sur la réponse 1/2 pour faire plasir à certains et proposer l'article en ligne ? HB 25 juin 2006 à 19:36 (CEST)
- Le touriste vient de rentrer de son tourisme. Je suis peut-être trop diplomate mais je constate qu'un des plus virulents participants au débat n'a rien posté sur Wikipedia depuis le 19 juin et me dis qu'il serait peut-être plus courtois d'attendre son retour pour agir - si on pense que je devrais être plus hardi, on peut me pousser (on peut aussi copier-coller mon brouillon et hop dans la page définitive, au passage on pourra comme ça le modifier - il a vocation à évoluer, et ce à la façon Wiki, par successions d'interventions). --Touriste 25 juin 2006 à 19:56 (CEST)
- Cela étant la remarque de l'anonyme ci-dessus n'est pas inintéressante, plus intéressante sans doute que la problématique posée par l'article dans sa forme actuelle. On peut en effet se demander QUELLE hypothèse d'équiprobabilité est implicite dans la question ; il me paraissait évident que c'était une équiprobabilité sur les familles, mais en lisant ce commentaire (et d'ailleurs aussi en y pensant il y a deux jours) je dois reconnaître que supposer l'équiprobabilité des garçons est tiré par les cheveux mais pas insensé. Boaf, je ne sais quel profit tirer de la remarque. --Touriste 25 juin 2006 à 20:02 (CEST)
(Jacques Decour) Je suis l'anonyme ci-dessus, mais je vais signer, ce sera plus pratique. Je précise que je ne tiens pas à défendre 1/2 plutôt que 2/3 : j'observe simplement que l'énoncé tire délibérément vers deux directrions contradictoires selon les mots qu'on souligne. Comparons "étant donné que nous avons UNE FAMILLE de deux enfants avec au moins un garçon, quelle est la probabilité que le garçon ait une soeur" et "étant donné que nous avons une famille de deux enfants avec au moins UN GARCON, quelle est la probabilité que LE GARCON ait une soeur"
Tout le monde est d'accord que les énoncés suivants sont assez clairs "Quelle est la probabilité conditionnelle qu'une famille de deux enfants comporte une fille et un garçon sachant qu'elle comporte au moins un garçon" (réponse 2/3) de même "Quelle est la probabilité qu'un garçon d'une famille de deux enfants [ayant donc au moins un garçon !] ait une soeur" (réponse 1/2)
En posant la question sous la forme "probabilité que le garçon ait une soeur", l'énoncé ci-dessus éloigne de l'énoncé correct. Bien sûr, dire "la famille a une fille et un garçon" ou "le garçon a une soeur" est équivalent au niveau logique, mais crée de l'obscurité au niveau probabiliste car le sujet de la phrase "la famille" ou "le garçon" induit une notion d'équiprobabilité différente. On le voit bien si on essaie de formuler la version "le garçon" sous une forme rigoureuse de la forme probabilité de A sachant B. Regardons : "Quelle est la probabilité conditionnelle que le garçon ait une soeur sachant qu'on a une famille de deux enfants avaec au moins un garçon". Ca ne va visiblement pas. L'article anglais devrait se limiter à poser le problème sous la forme : "étant donné que nous avons une famille de deux enfants avec au moins un garçon, quelle est la probabilité que cette famille comporte une fille et un garçon". Sous cette forme au moins, la réponse attendue par le questionneur est assez claire (2/3). Mais je pense qu'il est quand même préférable de choisir la formulation mathématique de la question (probabilité conditionnelle de A sachant B).
Plus généralement, les exercices du type "On sait B, quelle est la probabilité de A" doivent être maniés avec la plus grande prudence. Pour les poser, il y a deux possibilités. 1) Soit on fait un problème de mathématiques et alors on demande "quelle est la probabilité conditionnelle de A sachant B" (A et B devant être non ambigus; le mot "conditionnelle" est utile pour dire qu'il ne s'agit pas d'une probabilité au sens primitif et en particulier que l'application à une situation concrète nécessitera une réflexion supplémentaire). 2) Soit on fait un problème de modélisation : et alors l'énoncé doit détailler comment le hasard intervient, et en particulier comment l'information B a été obtenue, car cela peut modifier la modélisation requise. (Jacques Decour)
- Votre remarque me semble en effet avoir sa place dans l'article, (tout particulièrement la dernière phrase et l'observation importante sur l'utilité de savoir comment l'information B a été obtenue...) Et hop un petit "todo" de plus, mais c'est une bonne chose en effet que d'étoffer la partie "Remarques". --Touriste 25 juin 2006 à 22:39 (CEST)
Je remarque qu'un des principaux participants à la controverse semble rentré sur Wikipedia, et n'est pas intervenu ici. Est-ce un choix délibéré ou cette discussion a-t-elle échappé à sa vigilance ? Si le débat ne reprend pas d'ici disons deux jours, je basculerai mon brouillon, sans doute un peu amendé pour prendre en compte les remarques faites ci-dessus, à la place de la version actuelle. --Touriste 3 juillet 2006 à 12:12 (CEST)
Réponse à Touriste
[modifier le code]Je vois clairement que pour Touriste (entre autres), Il faut absolument une réponse (attitude que l'on peut qualifier de simpliste). Le bonne article est alors celui qui présente l'énnoncé non paradoxal. Mais alors, ce n'est plus un paradoxe, mais un (trés) simple exercice de calcul de probabilité (comme il y en a déjà trop). C'est éluder la difficulté du problème. J'ai crée cet article sur la base de l'énnoncé que j'ai trouvé dans paradoxe. Cet énoncé est excellent ca c'est réellement un paradoxe. Cette formulation montre que le raisonnement scientifique doit s'appuyer sur une formalisation rigoureuse, faute de quoi, il se fait piégé.
- étant donné le peu de corrections (merci à Wart Dark :) qui ont été faite de mon remaniement (qui a été hatif et reste inachevé), j'ai des doutes sur la qualité des lectures qui en ont été faites. D'ailleurs, il n'y a aucune critique de fond sur les explications avancées (pour résumé: la divergence "préalablement déterminé/est choisi de sorte qu'il")
Je suis portèe à croire que l'on n'en veut qu'à ce qui n'a pas été lu ou compris. C'est pourtant la clef du problème.
- on peut bien sur énoncer (dans les compléments) toutes ces variantes proposées et qui ne pose (pour la plupart aucune difficulté). Cela illustrerait le propos (comme le fait "Une analogie".
- on pourrait recycler "Quelles sont les probabilités en présence ?" dans "Raisonnement de l'élève" et "Raisonnement détaillé du professeur". Cela allègerait un peu.
- concernant les sources : malheureusement, parmi toutes celles citées, elles sont à l'image des discussions. Elle s'attarde sur les calculs mais font l'impasse sur la formalisation (donc l'analyse sémantique) <STyx @ 3 juillet 2006 à 17:26 (CEST)
Proposition d'organisation de l'article
[modifier le code](Jacques Decour) Si je peux me permettre, je crois que la meilleure façon d'organiser l'article serait :
1) affirmer clairement que le problème de départ est mal posé et qu'il n'y a pas de réponse ;
2) résoudre les problèmes de probabilité conditionnelle sur lesquels tout le monde est d'accord, mais en les énonçant sous une forme mathématique correcte : probabilité conditionnelle de A sachant B, avec un tirage au sort non ambigu ;
3) reprendre le problème initial en montrant que diverses façons d'interpréter l'information disponible B (d'une part ce qu'elle signifie vraiment, mais aussi et surtout la façon dont elle a été obtenue) aboutissent à des probabilités différentes, et insister sur le fait que c'est bien normal.
Je pense qu'on aura progressé si l'article explique que parler de la probabilité d'une assertion n'a pas de sens. Qui dit probabilité, dit événement et espace probabilisé. Pour l'application à des situations concrètes, il faut que la façon dont le hasard intervient soit précisée.
Regardant un peu sur internet, j'ai trouvé une référence intéressante à l'adresse http://discuss.fogcreek.com/techInterview/default.asp?cmd=show&ixPost=1608 Il s'agit d'un article de Martin Gardner d'octobre 1959 dans Scientific American. Je le reproduis en anglais, puis traduit par mes soins :
Another example of ambiguity arising from a failure to specify the randomizing procedure appeared in this department last May. Readers were told that Mr. Smith had two children, at least one of whom was a boy, and were asked to calculate the probability that both were boys. Many readers correctly pointed out that the answer depends on the procedure by which the information "at least one is a boy" is obtained. If from all families with two children, at least one of whom is a boy, a family is chosen at random, then the answer is 1/3. But there is another procedure that leads to exactly the same statement of the problem. From families with two children, one family is selected at random. If both children are boys, the informant says "at least one is a boy." If both are girls, he says "at least one is a girl." And if both sexes are represented, he picks a child at random and says "at least one is a ..." naming the child picked. When this procedure is followed, the probability that both children are of the same sex is clearly 1/2. (This is easy to see because the informant makes a statement in each of the four cases -- BB, BG, GB, GG -- and in half of these case both children are of the same sex.) That the best of mathematicians can overlook such ambiguities is indicated by the fact that this problem, in unanswerable form, appeared in one of the best of recent college textbooks on modern mathematics.
Un autre exemple d'ambiguïté provenant de l'absence de spécification de la procédure de tirage au sort est apparu dans cette rubrique en mai dernier. On vous dit que M. Smith a deux enfants, dont au moins un est un garçon et on vous demande de calculer la probabilité que les deux enfants soient des garçons. Plusieurs lecteurs ont remarqué à juste titre que la réponse dépend de la procédure par laquelle l'information "au moins un est un garçon" est obtenue. Si parmi toutes les familles de deux enfants dont l'un au moins est un garçon, une famille est choisie au hasard, alors la réponse est 1/3. Mais il y a une autre procédure qui mène exactement au même énoncé du problème. Parmi les familles de deux enfants, une famille est choisie au hasard. Si les deux enfants sont des garçons, l'informateur dit "au moins un enfant est un garçon"; si les deux enfants sont des filles, il dit "au moins un enfant est une fille"; et si les deux sexes sont représentés, il choisit un enfant au hasard et dit "au moins un enfant est ...", donnant le sexe de l'enfant tiré au sort. Quand cette procédure est suivie, la probabilité que les deux enfants soient de même sexe est clairement 1/2. (C'est facile à voir parce que l'informateur fait une déclaration dans chacun des quatre cas GG, GF, FG, FF et dans la moitié de ces cas deux des enfants sont de même sexe). Que les meilleurs mathématiciens puissent ne pas voir de telles ambiguïtés est confirmé par le fait que ce problème, sous une forme où la réponse est impossible, apparaît dans l'un des meilleurs manuels de premier cycle récents de mathématiques modernes.
Martin Gardner, octobre 1959, Scientific American
(Jacques Decour)
- Je suis plutôt d'accord avec cette proposition. Pour en avoir déjà discuté, il me semble que le coeur du paradoxe concerne l'interprétation probabiliste de l'énoncé. Autrement dit dans la version actuelle de l'article, la troisième et quatrième interprétation ne me semblent pas pertinentes. Il me semblerait ainsi plus adapté --pour écarter l'interprétation "obstréticienne"-- de parler de "boule bleue" et de "boule rouge" en nombre égal dans une urne.
- Comme l'a fait Jacques Decour, il me semble indispensable d'introduire un peu de jargon pour en parler. Ce jargon est de toutes manières accessibles aux lycéens de Première, ce qui ne me semble pas trop restreindre le public (comparez cela par exemple au Théorème de Stampacchia).
- Arrivé à ce point, l'article anglophone me semble bien exprimer le problème. Par ailleurs, il me semble que l'ambiguïté repose sur ce que l'on appelle un évènement élémentaire : Si l'on souhaite prendre en compte l'ordre dans lequel les enfants naissent, on a alors 4 évènements élémentaires : Un garçon puis une fille, une fille puis un garçon, deux garçon ou deux filles. Si l'on fait abstraction de cet ordre, on n'a plus que trois évènements élémentaires : un garçon et une fille, deux garçon, ou deux filles. L'une ou l'autre des inteprétation donne l'une ou l'autre des réponses. En termes mathématiques cela consiste à choisir d'utiliser un couple de sexes ou bien un ensemble de sexes parmis {garçon, fille}. Certains énoncés permettent de deviner l'interprétation pertinente. Il me semble d'ailleurs qu'utiliser un ensemble de sexes est sémantiquement (et pas seulement arithmétiquement) équivalent à utiliser un couplet de sexes avec des probabilités condionnelles.
- Comme l'article cité le montre, l'origine de l'information joue un rôle crucial pour sa correcte interprétation, et il me semble important d'en parler dans l'article pour bien apprécier le problème. VincentPalmieri 14 août 2006 à 01:24 (CEST)
Rien que pour embêter Salle
[modifier le code]Salle a fait remarquer qu'il n'est pas réaliste de dire qu'il naît autant de garçons que de filles, et que les naissances sont indépendantes… http://www.cia.gov/cia/publications/factbook/fields/2018.html
Effectivement, ça doit faire une différence entre l'Arménie (1,17 g/f à la naissance) et les îles Féroés (1). Euh, on ajoute "aux îles Féroées" dans l'énoncé? Par contre l'influence du sexe du premier enfant sur celui de second, j'en sais rien. Euh, ce serait pas un truc qu'on est complètement incapable d'expliquer?
Si on considère les sexes des deux enfants comme indépendant, je trouve que sachant que la famille de deux enfants a une fille, il y a 1/(1+2s) chance qu'elle ait 2 filles (s étant le sex ratio, le nombre de garçons par filles à la naissance). Mais bon, ce sera jamais un "problème réel".
Tiens, au fait, question piège: je sonne à la porte d'une famille dont je sais qu'ils ont 2 enfants. Une fillette m'ouvre (et elle ressemble assez aux parents pour que je sois sûr qu'elle est leur fille). Quelle est la probabilité pour qu'ils aient 2 filles? Bourbaki 4 juillet 2006 à 17:39 (CEST)
Petite suppression
[modifier le code]Je retire le passage
Cette genre de considération est aussi grotesque que de faire intervenir l'age du capitaine. Elle ne fait que compliquer la situation, mais ne lève l'ambiguïté. Ces considérations sont le fruit d'une intuition insuffisamment analysée de l'ambiguïté du problème. Elles ne font que confirmer le trouble présent dans l'esprit qui cherche à défendre leur interprétation.
l'auteur a dû se tromper en l'insérant côté "article" :)
Indice pour Bourbaki: quand tu sonnes à la porte, tu es dans le cas d'une famille aléatractée. non rien
Ripounet 7 juillet 2006 à 01:44 (CEST)
- On en a discuté dans nos pages persos, Ripounet et moi. Pour les autres: toute réponse de 1/3 à 1 convient, selon que vous considèriez les garçons comme trop feignants pour ouvrir la porte ou au contraire qu'ils feraient toujours l'effort à la place de leu sœur. Bourbaki 7 juillet 2006 à 22:29 (CEST)
Désaccord de pertinence
[modifier le code]Il y a longtemps que le bandeau aurait du être mis.
Bilan au 17 juillet 2006
- La version actuelle, version de STyx ,est critiquée par HB en détail ici (lire Désaccord sur les conclusions de cet article), par Pfinge au même endroit (lire autre avis) , par Salle et Touriste, sa non neutralité a donné lieu à une négociation ici non suivie de modification
- Il existe une version de HB ici qui tentait un compromis, annulée par STyx
- Il existe une version proposée par Touriste là qui a l'accord de Jean luc W, de HB, de Salle
- Il y a une version de Salle ici
- Jacques Decour propose une autre version de compromis
L'article pour l'instant ne bouge pas. Je soupçonne que les mathématiciens sérieux ne perdent pas leur temps en polémiques stériles et n'aiment pas vraiment se faire traiter par le mépris (Touriste aurait selon STyx une attitude simpliste, les reproches faits à l'article proviendrait, selon STyx du fait qu'on ne l'aurait pas lu ou pas compris, les propos de HB sont simplistes selon STyx, la rédaction du complément, selon STyx, est bâclée) Toute tentative de modification de fond ou de refonte semble voué à l'échec car STyx y sera opposé. Je laisse donc le lecteur se faire son idée de la question en lisant les différentes propositions d'article. HB 17 juillet 2006 à 13:26 (CEST)
- Euh le probleme est plutot que je suis en tourisme assez permanent en cette saison et non que je suis vexe ; je recommencerai a m´occuper de cet article a mon retour (poste avec enthousiasme depuis un poste internet avec vue sur un petit lac autrichien). Je n´oublie pas ce truc en cours ! --Touriste 17 juillet 2006 à 15:32 (CEST)
- Alors bonnes vacances ;-) . Mais je laisse quand même le bandeau pour que les lecteurs aillent lire la page de discussion. HB 17 juillet 2006 à 16:22 (CEST)
Wappendorf Et bien... quelle discussion ! il y a plus d'infos ici que dans l'article !!! ... en tous les cas je suis content que le bandeau m'ai invité à lire la discussion ci-dessus, preuve si besoin en était que l'article est incomplet. Je ne sais ce qu'il est de la pertinence d'un article sur le "Paradoxe des deux enfants" vu que je n'en avait jamais entendu parler en tant que tel comme un cas d'école particulièrement intéressant (cfr discussion sur les articles inédits). A tout le moins, l'article de Martin Gardner mentionné par Jacques Decour a ce mérite d'apporter une référence. Si le hasard fait que je repasse par là un de ces 4 avec un peu de temps devant moi et que l'article n'est toujours pas corrigé je pourrais vous filer un coup de main mais rien n'est moins sur étant donné la polémique pour le moins "surréaliste" sur un sujet qui ne me semble pas "majeur"... Wappendorf 25 juillet 2006 à 21:38 (CEST)
Trop long
[modifier le code]Vraiment, cet article est bien trop long. L'article anglais est je trouve bien mieux, bien que plus court. Pourquoi donner tous ces points de vue ridicules ? Cela ne participe qu'a embrouiller le lecteur... Ce paradoxe est trivial et ne mérite vraiment pas tout ca. Une réponse claire au paradoxe serait plus utile (avec bien sur un lien vers le paradoxe de Monty Hall et a la limite une petite note pour dire que l'énoncé utilise "un", qu'on pourrait remplacer par "au moins un", au risque de tromper moins de monde et donc de perdre son status de paradoxe ^^) !
Par contre, l'exemple anglais de la question avec "l'ainé est un garcon" devrait etre inséré dans la version francaise car il aide a la comprehension de la question originale.
Frelaur 27 juillet 2006 à 00:02 (CEST)
- Et si on supprimait, tout simplement? Tout le monde trouve l'article nul, et insignifiant aussi semblerait-il puisque personne n'a envie de perdre du temps à le modifier... Je proposerai à la suppression dans les jours qui viennent si personne ne manifeste d'intérêt soudain pour le sujet.Salle 27 juillet 2006 à 00:26 (CEST)
- Non, je ne pense pas qu'il faille supprimer l'article. Le paradoxe est intéressant, assez connu, et mérite un article ! Mais dans sa forme actuelle, je trouve l'article francais bien trop confus, et on en resort plus embrouillé qu'avant de l'avoir lu. Je suis pour une simplification de l'article (a la maniere de l'article anglais en fait). Frelaur 27 juillet 2006 à 00:32 (CEST)
- Aurait-on enfin trouvé un gentil contributeur qui va faire le travail sur lequel on est essentiellement tous d'accord depuis un moment? Je t'avoue que ce serait chouette...Salle 27 juillet 2006 à 00:48 (CEST)
- Je veux bien refaire (qd j'aurai un peu plus de temps) un article plus propre et plus clair, en me basant notamment sur la version anglaise, mais si c'est pour qu'il soit annulé 2h plus tard par quelqu'un qui veut absolument conclure en disant que la reponse depend du contexte dans lequel la question est posée, ca me tente pas trop... Frelaur 27 juillet 2006 à 01:31 (CEST)
- C'est le jeu de Wikipedia. Cela dit, le risque est faible : le désaccord est parti d'un antagonisme avec STyx, qui n'intervient plus depuis un moment. Ensuite, les autres ont exprimé des opinion diverses, mais on était globalement d'accord, il me semble, sur le fait que toute simplification et clarification serait un progrès conséquent...
- Je veux bien refaire (qd j'aurai un peu plus de temps) un article plus propre et plus clair, en me basant notamment sur la version anglaise, mais si c'est pour qu'il soit annulé 2h plus tard par quelqu'un qui veut absolument conclure en disant que la reponse depend du contexte dans lequel la question est posée, ca me tente pas trop... Frelaur 27 juillet 2006 à 01:31 (CEST)
- Aurait-on enfin trouvé un gentil contributeur qui va faire le travail sur lequel on est essentiellement tous d'accord depuis un moment? Je t'avoue que ce serait chouette...Salle 27 juillet 2006 à 00:48 (CEST)
- Non, je ne pense pas qu'il faille supprimer l'article. Le paradoxe est intéressant, assez connu, et mérite un article ! Mais dans sa forme actuelle, je trouve l'article francais bien trop confus, et on en resort plus embrouillé qu'avant de l'avoir lu. Je suis pour une simplification de l'article (a la maniere de l'article anglais en fait). Frelaur 27 juillet 2006 à 00:32 (CEST)
(Jacques Decour)
Nouvelle référence
[modifier le code]J'ai trouvé par hasard (!) une nouvelle référence : le livre d'Arthur Engel Les certitudes du hasard (Aléas Editeur, 1990) traduction de Stochastik (Ernst Klett Verlag, Stuttgart, 1987).
Dans le chapitre 13, "Probabilités conditionnelles", l'auteur propose l'exercice suivant (section 13.2, exercice 9, page 194) :
Une famille a deux enfants. On sait qu'il y a au moins un garçon et que l'aîné est un garçon. Quelle est la probabilité que le cadet soit un garçon ?
Réponse page 314 : L'exercice ne peut être résolu : on ne précise pas la procédure aléatoire qui produit les informations sur la famille. On peut proposer la «solution» suivante : on part de l'ensemble {GG, GF, FG, FF}. Dans a) cet ensemble se réduit à {GG, FG, GF} et la réponse est 1/3. Dans b) l'ensemble se réduit à {GG,GF} et la réponse est 1/2.
Il y a bien sûr une bizarrerie : la réponse parle de a) et de b), au contraire de l'énoncé. On s'attendrait à ce que l'énoncé comporte deux questions
distinctes : a) on sait qu'il y a au moins un garçon ; b) on sait que l'aîné est un garçon.
Quoi qu'il en soit, le point essentiel est le même que dans le texte de Martin Gardner que j'ai reproduit plus haut : on ne peut pas répondre si la procédure
par laquelle l'information est obtenue n'est pas précisée.
De façon générale, si A et B sont deux événements (définis sans ambiguïté) d'un espace probabilisé (lui aussi non ambigu), il n'y a pas d'ambiguïté pour déterminer la probabilité conditionnelle de A sachant B.
En revanche, si A est un événement et B une assertion, on ne peut pas répondre à un exercice de la forme "On sait B; quelle est la probabilité de A?". Dans les cas les plus simples, on peut tenter de replacer cette question dans le cadre "probabilité conditionnelle de A sachant B" en interprétant l' assertion B comme un événement B. Mais cette démarche n'est pas rigoureuse si on ignore la façon dont l'information B est obtenue (voir le texte de Martin Gardner) ; dès que les questions se compliquent, on arrive à des discussions sans fin (voir ici-même !)
Ma conclusion : le "paradoxe des deux enfants" provient du fait que le problème est mal posé.
(Jacques Decour)
Grossière erreur
[modifier le code]Je suis partisan de dire que ce paradoxe n'en est pas un du tout. La question n'est pas forcément mal posé mais, c'est un règle élémentaire en probabilités, le monde n'est pas décrit : la tribu borélienne a utilisée n'est pas définie correctement. De nombreux problèmes de tests statistiques ou de probabilités ont des réponses variant en fonction de la description du problème, ce n'est ni un paradoxe ni un fait nouveau. On peut me rétorquer que c'est une vision mathématique mais demander une probabilité n'a de sens que dans le monde mathématique. Or ici ce paradoxe n'existe pas pour ceux qui connaissent correctement les probabilités.--Zzerome 25 septembre 2006 à 08:38 (CEST)
C'est vraiment obligatoire de dire que la soumission au 2/3-1/3 relève du même phénomène que cette expérience? Très franchement, j'ai l'impression de lire que ceux qui pensent que 2/3-1/3 est la bonne réponse sont des bourreaux. Bourbaki 2 août 2006 à 21:08 (CEST)
- Houlà, j'avais pas vu cet horrible paragraphe. Je temporise quelques heures, voire 1 ou 2 jours, et ensuite je le retirerai. A part ça je suis partisan du 2/3-1/3 et effectivement mon passe-temps favori consiste à arracher leurs pattes à des sauterelles, tout en écoutant miauler ma collection de chattons en bocaux :) Ripounet 2 août 2006 à 21:25 (CEST)
- Fait. J'ai donné des conclusions un peu plus sereines. Bourbaki 30 août 2006 à 14:32 (CEST)
Version courte
[modifier le code]J'ai remplacé l'article par quelque-chose de beaucoup plus court. Ça manque encore d'explications formelles, notamment pour l'interprétation qui donne 1/2. Vous pouvez aussi reverter sans me prévenir si vous considerez que c'était mieux avant. Marc Mongenet 25 septembre 2006 à 15:08 (CEST)
- Oh que non ce n'était pas mieux avant ! Merci bien d'avoir «été hardi», j'en tire un enseignement pour l'avenir, moi qui avais écrit une version courte dans mon espace utilisateur, jamais rapatriée ici ; ta façon de faire est clairement la bonne ! Touriste * (Discuter) 25 septembre 2006 à 15:12 (CEST)
- Après avoir lu un peu plus de débats, je constate que je suis arrivé indépendamment à une version proche de ce qui a été déjà largement débattu (notamment proche de #Proposition_d.27organisation_de_l.27article). Croyez-le si vous voulez, mais je me suis lancé dans cet article en ignorant tout des disputes précédentes ! Je sais, j'aurais dû fouiller un peu plus les discussions avant de remanier l'article... Mais il était dans un état tellement déplorable que je ne m'imaginais pas que d'aussi bonnes solutions aient été proposées sans avoir été utilisées pour corriger l'article. :) Bon, ma version est un peu naïve, je laisse les professeurs de math revoir tout ça. Marc Mongenet 25 septembre 2006 à 15:20 (CEST)
Ré-écriture complète
[modifier le code]Cet article me semblait tout simplement mauvais.
Il prends une version ambigüe de l'énoncé, puis traite uniquement de cette ambigüité au lieu du fond.
Il contient une erreur logique : L'interprétation 2 omet respectivementds les cas FG et GF (tout en utilisant respectivement les cas GF et FG, un comble !).
La version initiale me semblait mieux, mais trop bavarde et dispersée. J'ai donc décidé de le réécrire complètement. Ça m'a mené beaucoup plus loin plus que je ne l'aurai cru, et je suis péniblement (après quelques jours !) arrivé à un texte qui me semble bien couvrir le sujet sans être un roman.
Il lui manque plus de rigueur dans les raisonnements et du formalisme - je laisse ça à ceux qui savent. Et vu que je pourrais très facilement avoir fait des erreurs, il faut le vérifier.
Mais ne vous aventurez pas à changer le sens logique de l'article si vous n'avez pas soigneusement étudié le problème. Il est très, mais alors vraiment très, piégeux.
C'est ma première intervention dans Wikipédia, j'espère ne pas avoir mis les pieds dans le plat.
Questions ouvertes :
- Y a-t'il d'autre cas de corrélation du sexe des enfants que les vrai jumeaux ? Il me semble avoir lu que oui, mais je n'ai rien de concret.
- Est-il correct de lister comme réponse « Rien ne lie le sexe des enfants, la probabilité est directement 1/2» ? C'est pas un raisonnement en soi...
Musaran 20 octobre 2006 à 21:11 (CEST)
- Bienvenue et bravo pour ton intervention courageuse sur un sujet délicat. J'aimerais bien que tu précises pourquoi tu trouves que ta version est meilleure que la précédente. En première lecture, j'ai surtout eu l'impression que l'information était présentée de façon plus concise, et plus percutante dans la version antérieure, alors qu'elle est maintenant délayée. J'ai aussi remarqué dans ta version des affirmations sur la fréquence des interprétations qui me semblent hasardeuses, puisqu'elles ne sont pas sourcées. Cordialement, Salle 20 octobre 2006 à 21:39 (CEST)
- La précédente était effectivement plus 'percutante', mais par trop simpliste et pas très explicative sur le fond. En cherchant j'ai découvert de multiples facettes a ce problème, j'ai essayé de couvrir l'essentiel au mieux de ce que je sais comprendre : dur de faire plus bref sans tronquer, ou de mieux expliquer sans aller au roman. Si ceux qui se proposaient de le refaire ne l'on pas fait, c'est qu'à mon avis ils s'y sont cassés la tête (j'ai mis 3 jours). Je sais que ma prose manque de lisibilité, éditions bienvenues...
- Note : Je n'ai pas inclus les formules de probabilités des versions précédentes uniquement parce que je n'y connais rien et que j'ai vu à quel point les erreurs sont faciles et fréquentes.
- Les fréquences, c'est mon impression d'après mon 'sens commun' et divers textes internet. Je peut les citer si nécessaire, mais il y a du moins bon et de l'anglais.--Musaran 24 octobre 2006 à 23:59 (CEST)
- Désolé, mais ta version explique encore moins que celle de Marc Mongenet. J'aimerais mieux qu'on garde celle-là pour l'instant, il vaudrait mieux que tu tentes de mixer les pages sur un brouillon pour qu'on le regarde avant de transfèrer à la place de l'article. Pour les corrélations des sexes, mieux vaut s'en tenir à indiquer dans l'article qu'on les néglige. D'autre part je n'aime pas du tout le lien vers ce groupe google. J'ai l'impression que personne là-bas n'a saisi que si une fille ouvre la porte, ça ne correspond pas à l'énoncé "une famille de 2 enfants dont au moins une fille" qui mène au fameux 1/3. Bourbaki 4 décembre 2006 à 21:12 (CET)
- Ton intervention me paraît raisonnable. Et désolé d'avoir commencé à répondre, et de mettre arrêté là ; j'avais tout simplement oublié.Salle 4 décembre 2006 à 21:24 (CET)
- Désolé, mais ta version explique encore moins que celle de Marc Mongenet. J'aimerais mieux qu'on garde celle-là pour l'instant, il vaudrait mieux que tu tentes de mixer les pages sur un brouillon pour qu'on le regarde avant de transfèrer à la place de l'article. Pour les corrélations des sexes, mieux vaut s'en tenir à indiquer dans l'article qu'on les néglige. D'autre part je n'aime pas du tout le lien vers ce groupe google. J'ai l'impression que personne là-bas n'a saisi que si une fille ouvre la porte, ça ne correspond pas à l'énoncé "une famille de 2 enfants dont au moins une fille" qui mène au fameux 1/3. Bourbaki 4 décembre 2006 à 21:12 (CET)
Remaniement de l'article
[modifier le code]Cet article est rempli d'erreurs, et cela est du au fait que des gens qui n'ont rien à voir avec les mathématiques et la logique y aient apporté leur grain de sel. Je propose donc ma vision de l'article, qui présente comment un énoncé mathématique DOIT être compris, et cela j'espère répondra aux questions que se posent certains.
L'énoncé du problème est ON NE PEUT PLUS CLAIR. Si autre interprétation il y a, elle provient du manque de rigueur et de sens logique de l'interprète, mais en aucun cas d'une imprécision de l'énoncé, qui est limpide. La réponse EST 1/3. Voila une version simple et épurée de l'article qui pourrait convenir après quelques modifications formelles (je ne connais pas trop la synthaxe de wikipedia), et ajout de références :
« Sachant qu'une famille a deux enfants et que l'un d'eux est un garçon, quelle est la probabilité que l'autre soit un garçon aussi ? » Ce célèbre énoncé mathématique peut paraitre ambigu et amener à deux solutions contradictoires : 1/2 et 1/3. En réalité c'est un faux paradoxe car la seule solution rigoureuse est 1/3. Néanmoins ce faux paradoxe est interessant car il insiste sur les précautions à prendre lorsqu'on interprète un énoncé mathématique de ce type.
Comment lire un énoncé de manière rigoureuse :
Tout d'abord il y a certaines hypothèses implicites liées au domaine des probabilités : - Il y a autant de filles que de garçons dans la population totale - Lors d'un naissance quelconque les probabilités qu'il naisse une fille ou un garçon sont les mêmes. Ensuite la seule manière rigoureuse de procéder est d'interpréter les informations en terme d'ensemble.
" Sachant qu'une famille a deux enfants " :
-> On se place dans I l'ensemble des familles à deux enfants. On a trois sous-ensembles disjoints de I selon le sexe des enfants : {FF} (deux filles), probabilité 1/4 dans I {FG} (une fille et un garçon), probabilité 1/2 dans I {GG} (deux garçons), probabilité 1/4 dans I
" et que l'un d'eux est un garçon " :
-> On prend le sous-ensemble des familles à deux enfants dont l'un (note1) est un garçon, J = {FG,GG}. La probabilité qu'une famille de l'ensemble total I appartienne à J = {FG,GG} est :
prob(dans I)({FG}) + prob(dans I)({GG}) = 1/2 + 1/4 = 3/4
"quelle est la probabilité que l'autre soit un garçon aussi ?"
-> A l'intérieur de ce sous-ensemble J on regarde la probabilité qu'une famille appartienne à l'ensemble {GG} des familles à deux garçons : prob(dans J)({GG}) = prob(dans I)({GG}) / prob(dans I)(J) = (1/4) / (3/4) = 1/3
La réponse au problème est donc 1/3.
L'énoncé ne souffre aucune autre interprétation rigoureuse. Les erreurs d'interprétations qui conduisent au raisonnement 1/2 peuvent se situer à deux endroits :
-Soit on fait le bon raisonnement ensembliste mais on se trompe grossièrement en pensant que {FF},{FG} et {GG} sont équiprobables dans I, de probabilité 1/3. -Soit on rajoute intuitivement des hypothèses qui pourtant n'apparaissent ou ne sont sous-entendues en aucun cas dans l'énoncé, et qui rendent la solution différente.
Exemple d'énoncé modifié qui mène à la solution 1/2 :
« Sachant qu'une famille a deux enfants et que l'aîné est un garçon, quelle est la probabilité que l'autre soit un garçon aussi ? »
-> On se place toujours dans l'ensemble I, mais cette fois on distingue deux-sous ensemble en fonction du sexe de l'aîné : {F} (l'aîné est une fille), de probabilité 1/2 dans I {G} (l'aîné est un garçon), de probabilité 1/2 dans I
-> Si on regarde l'ensemble {FG}, on peut le séparer en deux sous-ensembles disjoints suivant le sexe de l'ainé. En effet même dans le cas de jumeaux fille-garçon, l'un nait forcément avant l'autre. Soient donc : - {F'G} le sous-ensemble de {FG} tel que l'aîné soit la fille, de probabilité 1/2 dans {F} - {G'F} le sous-ensemble de {FG} tel que l'aîné soit le garçon, de probabilité 1/2 dans {G}
-> On a alors {G} qui est l'union disjointe des ensembles {G'F} et {GG} prob(dans {G})({GG}) = 1 - prob({G})(G'F) = 1 - 1/2 = 1/2
La réponse à ce problème, différent du problème initial, est donc 1/2
(note1) : Dans le langage mathématique il faut comprendre " au moins un ", et non pas " exactement un " (Il s'agit d'une convention, au même titre qu'on sous-entend "supérieur ou égal" lorsqu'on écrit "supérieur"). Cette confusion peut donner lieu à une interprétation encore différente de l'énoncé, appelée généralement "interprétation de Simplicio".
Réponse à la dernière intervention
[modifier le code]Je ne sais pas si l'auteur de la dernière intervention a lu toute la discussion. Je me permets de lui proposer de se reporter par exemple à ce que j'y ai écrit (Jacques Decour), cf citations de Gardner et Engel. Etant mathématicien, je connais bien cet exercice et sa formulation mathématique correcte :
« Quelle est la probabilité conditionnelle qu'une famille de deux enfants a deux garçons sachant qu'elle en a au moins un ?»
Pour ce problème de mathématiques, la réponse est 1/3 (avec les hypothèses implicites ne faisant pas difficulté). Si on ôte le « au moins », on peut considérer que cela ne change pas l'interprétation. Si on ôte le mot « conditionnelle », on perd en rigueur mathématique et l'énoncé devient ambigu : la réponse 1/3 est peut-être la plus raisonnable, mais elle devient une réponse de connivence (je devine ce qu'on veut me faire dire).
Examinons maintenant l'énonce proposé dans l'intervention précédente :
« Sachant qu'une famille a deux enfants et que l'un d'eux est un garçon, quelle est la probabilité que l'autre soit un garçon aussi ? »
Défauts de rigueur : «Sachant que » est mis au début; le mot « conditionnelle » est absent; la probabilité demandée est celle
de l'évènement «l'autre est un garçon ».
Or «l'autre est un garçon » n'est pas un évènement correctement défini. On le voit bien dans la formulation :
« Quelle est la probabilité que l'autre soit un garçon, sachant que l'un est un garçon? »
A l'évidence, ce n'est pas une bonne formulation.
On touche ici du doigt un des points délicats : demander la probabilité que «la famille a deux garçons », ou celle que «l'autre est un garçon » n'est pas indifférent et crée une source d'ambiguïté; dans le premier cas, c'est une probabilité sur une famille, dans le second une probabilité sur un enfant.
Si on voulait éviter cette grave ambiguïté, tout en conservant la même structure d'énoncé, il faudrait au moins « Sachant qu'une famille a deux enfants et que l'un d'eux est un garçon, quelle est la probabilité que la famille ait deux garçons ? » La réponse de connivence serait probablement 1/3, mais je pense que ce dernier énoncé reste ambigu : tant qu'on ne précise pas la façon dont l'information «la famille a au moins un garçon» est obtenue, on ne peut pas être sûr de l'évènement par rapport auquel on doit conditionner. La règle d'or à mon avis : une assertion (une information) n'est pas un évènement tant qu'on ne précise pas le procédé aléatoire qui lui a donné naissance.
Conclusion : les énoncés du type « sachant que..., quelle est la probabilité de ...» ne sont pas rigoureux. On ne peut répondre que si on précise la façon d'obtenir l'information. Pour avoir un énoncé mathématique rigoureux, il faut une syntaxe rigoureuse : « Quelle est la probabilité conditionnelle de A sachant B» avec des évènements A et B bien précisés (voir aussi mes interventions antérieures).
(Jacques Decour)
Formalisme...
[modifier le code]Bonjour, je ne suis pas mathématicien, mais on peut toujours causer...
Il me semblerait intéressant de dire que le sexe d'un enfant est aléatoire, au moment où il naît.
Le formalisme {GF} doit être précisé. Si ça veut dire "un garçon comme aîné, puis une fille comme cadette", il faut le dire. A ce moment, il est naturel de dire que {GG}, {GF}, {FG} et {FF} sont équiprobables a priori dans une famille de deux enfants.
La version du problème où la solution est 2/3-1/3 est claire, et facile à résoudre, bien que contre-intuitive.
La version du problème de "un garçon ouvre la porte" est beaucoup plus dure à résoudre, car c'est la superposition de deux phénomènes aléatoires : les naissances, et le choix de l'enfant qui ouvre la porte. Il faut aller jusqu'au bout de la démonstration qui donne la solution 1/2-1/2 (je me garderai bien de le faire moi-même...), ou laisser tomber cette version du problème.
PierreL (d) 22 janvier 2008 à 14:54 (CET)
Énoncé correct
[modifier le code]Pour être précis on considère les deux évènements suivants:
A : "un des enfants est un garçon"
B : "l'enfant que je connais est un garçon".
le contraire de A est : les deux enfants sont des filles
le contraire de B est : l'enfant que je connais est un non-garçon (ie une fille).
C'est pour cela que l'on décrit l'univers de A par : FG + GF + GG
(les deux lettres sont interchangeables et désigne les deux enfants inconnus...)
Et l'univers de B par GG + GF
La première lettre désigne l'enfant que je connais et l'autre désigne l'enfant que je ne connais pas...
ATTENTION AU SENS DU FORMALISME UTILISE !!!
88.169.104.187 (d) 8 février 2009 à 19:35 (CET)Tontonyoyo
Réécriture des hypothèses implicites
[modifier le code]Je conteste cette modification pour plusieurs raisons :
- C'est justement parce que je ne tenais pas à détailler les ratios réels que j'ai renvoyé à l'article « Sex-ratio ». Le lien externe n'est pas forcément à supprimer, mais il suffirait de le mettre dans l'article détaillé.
- Il faut se méfier des évidences. « Dans la réalité, c'est évidemment faux. » Non. L'existence des jumeaux monozygotes ne réfute pas directement l'indépendance systématique entre les sexes des deux enfants : c'est le modèle mathématique qui met en évidence la correlation. Les biologistes se garderont bien d'affirmer qu'ils ont démontré l'indépendance, même de façon statistique, chez l'être humain. Et l'indépendance est réfutée hors cas de gémélléité chez d'autres espèces.
- Les calculs ne sont pas plus difficiles à faire en réfutant l'indépendance et en faisant varier l'équilibre entre garçons et filles.
- Je persiste à affirmer que le fait que les enfants soient discernables (au sens des probabilités, pas au sens des particules indiscernables, même s'il y a un rapport) est essentiel pour effectuer les calculs ensuite.
Ambigraphe, le 2 juillet 2010 à 23:48 (CEST)
- d'accord, mais je préfère quand même dire "varie selon les âges et les régions" que donner une indication générale. D'autant que ce sont les garçons qui sont majoritaires
- globalement, je voulais souligner le fait qu'il s'agit d'hypothèses de travail simplificatrices, et qu'on se soucie peu de leur rapport avec la réalité
- sur la discernabilité, c'est effectivement important. Mais plutôt à placer dans la partir critiques. Le fait qu'ils soient discernables permet d'écrire "on a les configurations FF, GG, FG, GF" et les traiter comme équiprobables. Mais je ne suis pas d'accord quand tu mets l'attribution d'un rang gémellaire en rapport avec cette propriété. BOCTAOE. Ou pas. Barraki Retiens ton souffle! 3 juillet 2010 à 11:29 (CEST)
- OK pour le premier point.
- On peut s'en soucier, cela ne change pas grand-chose au paradoxe.
- Je ne suis pas d'accord sur le troisième point. La discernabilité n'est pas une critique, elle est un préalable au calcul, pour pouvoir différencer FG et GF. Cela dit, tu as raison que ma formulation était sans doute maladroite concernant le rang gémellaire. Il faudrait trouver mieux. Ambigraphe, le 3 juillet 2010 à 11:34 (CEST)
- Considère mes dernières modifs comme une proposition. Je pense que ces hypothèses sont à des niveaux différents, à répartir en sous-parties. BOCTAOE. Ou pas. Barraki Retiens ton souffle! 4 juillet 2010 à 16:29 (CEST)
- C'est mieux, mais je tique encore sur quelques points :
- Le lien vers « Sex-ratio » n'a pas de sens avant la précision. Je le déplace.
- Je ne comprends pas ce que tu veux dire par « systématique ». Je propose une correction.
- L'emploi du mot « pathologie » est peut-être médicalement correct, mais je n'en sais rien et je préfèrerais rester prudent sur ce point. L'hermaphrodisme n'est pas si rare.
- En fait, on s'en fout de coller à la réalité. Ce qui est intéressant ici est un paradoxe probabiliste, pas un problème démographique.
- L'équiprobabilité annoncée est construite sur la discernabilité. Si on réfute cette dernière, cela n'amène pas à dire qu'il n'y a plus que trois possibilités équiprobables, cela amène à dire qu'il n'y a que trois possibilités. On peut très bien traiter le problème en supposant les enfants indiscernables, mais du coup la loi de probabilité parait arbitraire. Ambigraphe, le 4 juillet 2010 à 17:02 (CEST)
Et si on sortait du cadre humain ?
[modifier le code]Bonjour,
La question de la discernabilité entre FG et GF est évidemment essentielle.
Pour ne pas rentrer dans des considérations (légitimes) concernant la biologie humaine où des trucs qui relèvent d'une autre discipline (indiscernabilité ou non des particules élémentaires en physique) qui a elle même ses paradoxes (au sens para-doxa = contre l'opinion ) propres, je suggère d'idéaliser ce présent paradoxe en sa version purement mathématique :
soit :
- comme classiquement en maths pour des pb de proba avec des pièces de monnaies qui ont la valeur Pile ou Face. Et cet exemple/idéalisation mathématique est tellement connue que personne ne se posera la question physique : "oui mais ça peut aussi parfois tomber sur la tranche.
- Le pb est qu'on crée généralement des pièces indiscernables (à l'oeil nu) ,
- donc je suggère de le faire avec des jetons de 2 couleurs , blanc et noir, ayant chacun un côté P et un côté F
- La complexité a priori accrue de mettre en considération non pas non pas 2 trucs, mais 2*2 trucs, n'est qu'apparente, comme le montre la trivialisation ci-dessous :
- donc je suggère de le faire avec des jetons de 2 couleurs , blanc et noir, ayant chacun un côté P et un côté F
donc le truc devient
- 1/ Vous lancez 2 jetons de même couleur et savez que l'un (au moins) est tombé sur P, quelle est la proba que
l'autre soit tombéles 2 soient tombés sur P ? réponse après un petit calcul : 1/3. - 2/ Vous lancez un jeton noir et un jeton blanc et savez que le noir est tombé sur P, quelle est la proba que le blanc soit tombé sur P ? réponse instinctive immédiate et juste : 1/2
- 3/ Vous lancez un jeton noir et un jeton blanc et savez qu'un des 2 (au moins) est tombé sur P, quelle est la proba que
l'autre soit tombéles 2 soient tombés sur P ? réponse après un petit calcul : 1/3 + démonstration que l'énoncé 1/ = l'énoncé 3/
Bon une telle présentation, centrée sur les maths me semble vraiment plus claire, j'y vois néanmoins 2 reproches possibles :
- 1/ je n'ai jamais vu ce pb exposé de cette façon (à voir) tant la version F-G est classique. Mais cette (mienne ?) présentation me semble tellement triviale qu'elle ne me semble (ou ce serait me faire un honneur complétement immérité et déplacé) de la qualifier de TI.
- 2/ la réponse 1/2 dans le cas 2/ ci-dessus trivialise le pb et ne rend pas compte de l'aspect contre-intuitif du paradoxe ; qui est tout de même le coeur de l'article ! Néanmoins en conclusion mathématique de l'article (qui peut entretenir un certain suspense) il peut être bon de mentionner l'évidence de la solution
Bon, ceci est une idée qui me vient à la suite de l'évolution récente de l'article, je crois/espère n'avoir commis aucune boulette formelle (sinon me taper fort sur les doigts ;-) ) et ne compte pas pour l'instant du moins intervenir dans l'article Je laisse à ceux qui s'y investissent pour le moment le choix d'incorporer ou non mes suggestions
--Epsilon0 ε0 4 juillet 2010 à 22:33 (CEST)
- À chaque fois que tu dis « l'autre », tu particularises et donc la probabilité est de 1/2. Ambigraphe, le 4 juillet 2010 à 22:55 (CEST)
- Tu as tout à fait raison, j'ai modifié ci-dessus --Epsilon0 ε0 5 juillet 2010 à 09:44 (CEST) Part se cacher dans un trou le rouge aux joues et les doigts en feu ;-)
Erreur en fin d'article
[modifier le code]Sauf erreur de ma part la toute fin de l'article est fausse, lorsqu'il est dit au sujet du cas où la famille contient au moins un garçon né un mardi que la probabilité reste de 1/2 quand les parents donnent spontanément cette information, et non en réponse à une question qui leur est posée.
Mon calcul donne en effet 13/20, avec une formule générale à propos d'un caractère de probabilité p (ici "être né un mardi", p=1/7) qui est (2-p)/(3-p). Ce qui au passage en faisant p=1 permet de retrouver la probabilité de 1/2 du cas où les parents disent simplement "j'ai au moins un garçon". Je peux vous détailler le calcul si vous voulez, même si une version quasi-identique est disponible sur le net.
Jonathan
Soutien aux interventions de Jacques Decour
[modifier le code]J'interviens juste pour dire que je suis d'accord avec Jacques Decour. Tout particulièrement avec son intervention : "Nouvelle référence".
Je trouve toutes ses interventions pertinentes.
Il est bon de partir d'un énoncé qui semble clair, pour montrer ensuite qu'il est ambigüe et interprétable de plusieurs façons différentes.
--Bigi111 (d) 11 juillet 2012 à 15:08 (CEST)
Révision du paragraphe "Critiques/Acquisition de l'information"
[modifier le code]Le paragraphe "Critiques/Acquisition de l'information" énonce:
- À la question « Avez-vous au moins un garçon ? », M. Smith répond « Oui. » (événement ).
- À la demande « Indiquez-moi le genre de l'un de vos enfants. », M. Smith répond « J'ai (au moins) un garçon. » (événement ).
Que l'on pourrait aussi bien écrire:
- À la question « Avez-vous au moins un garçon ? », M. Smith répond « J'ai (au moins) un garçon. » (événement ).
- À la demande « Indiquez-moi le genre de l'un de vos enfants. », M. Smith répond « J'ai (au moins) un garçon. » (événement ).
La différence entre les événements A et B ne saute pas aux yeux !
- Ben si ! : la réponse est la même, mais pas la question (autrement dit, si Smith a un garçon et une fille, il répondra toujours de la même façon à la question A, mais a deux choix de réponse à la question B)--Dfeldmann (d) 24 avril 2013 à 16:27 (CEST)
- Je suis d'accord ! Il faudrait au moins énoncer un exemple de "sachant quoi" pour que l'explication soit complète. En effet, si M. Smith a un garçon et une fille :
- un seul événement A est possible,
- mais on aurait deux événements B possibles.
- La probabilité conditionnelle attachée à la réponse de M. Smith passerait alors de 1 et à 1/2. Je n'ai pas fait le calcul complet qui ressort de cela, mais il serait à effectivement à faire.
- --Dimorphoteca (d) 24 avril 2013 à 15:23 (CEST)
Preuve du jour de naissance
[modifier le code]Bonjour,
la valeur de 13/27 n'est pas explicitement prouvée dans l'article. C'est dommage, parce que c'est une extension de la preuve précédente, et ce n'est pas forcément évident pour un lecteur. Tpe.g5.stan (discuter) 23 juillet 2016 à 09:15 (CEST)
Une variante non dans l’article
[modifier le code]HB et Touriste : J’ai souvent proposé à mes élèves l’énoncé suivant : « Mes voisins viennent d’emménager ; sur leur boîte à lettres : M. et Mme Dupont et leurs deux enfants. En allant les voir pour la première fois, je remarque dans le jardin des jouets de fille (je sais, c’est sexiste 🙂). Je sonne, et une fille vient m’ouvrir. Quelle est la probabilité que l’autre enfant soit un garçon ? ». Bon, avec les hypothèses implicites usuelles, on trouve 1/5 (ou je suis vraiment nul). Qu’en pensez-vous ? Dfeldmann (discuter) 23 novembre 2022 à 11:34 (CET)
- Euh, je fais de moins en moins de math mais je ne vois pas ton raisonnement pour 1/5. J'obtiens bêtement 1/2. HB (discuter) 23 novembre 2022 à 11:50 (CET)
- Oui, je suis vraiment nul, vieux et fatigué. Bon, reprenons proprement : sur 4000 couples, 1000 ont deux filles, 1000 deux garçons, et 2000 un de chaque. Sur les 3000 ayant au moins une fille, une fille ouvre la porte dans 2000 cas (tous les cas avec deux filles + la moitié des cas mixtes). Et donc la probabilité dans ce cas que l’autre enfant soit un garçon est bien 1/2. Le pire, c’est que je me rappelle enfin maintenant que ça m’avait déjà surpris quand je posais le problème en colle… Dfeldmann (discuter) 23 novembre 2022 à 14:05 (CET)
- HB, Touriste et Dfeldmann : : Pardonnez-moi d'intervenir. Je vois bien les 2 000 cas "filles", mais sachant que l'on a un jouet de fille dans le jardin, il n'y a que 3 000 cas possibles dont 1 000 favorables (où l’autre enfant est un garçon). Donc la probabilité p(Garçon "sachant jouet de fille" et "sachant fille ouvre porte") = 1/3. Mais ai-je bien compris l'énoncé ? --Dimorphoteca (discuter) 23 novembre 2022 à 14:24 (CET)
- Version intuitive: Le fait qu'une fille ouvre la porte augmente la probabilité que le couple ne possède que des filles. Imagine que chaque fois que l'on se rend dans la famille, la porte soit ouverte par une fille. En supposant une parfaite et utopique égalité dans les rôles assignés aux filles et aux garçons, tu serais amené à croire qu'il n'y a pas de garçon dans la famille.
- Le calcul mathématique, lui, a déjà été développé par Dfeldmann. Je peux tenter de le présenter différemmment. G est l'événement : il y a au moins un garçon parmi les deux enfants.
- Sans info, on a car il y a 4 situations équiprobables : couple (Fille,Fille), couple (Fille,Garçon), couple (Garçon,Fille), couple (Garçon,Garçon).
- Avec l'info JF : il y a des jouets de fille dans le jardin, on estime qu'il y a au moins une fille dans la fratrie ; on a
- On sonne à la porte ; PF est l'événement : une fille ouvre la porte.
- donc
- Mais le questionnement de Dimorphoteca, faisant suite à la loooooongue discussion que j'ai eue avec STyx en 2006 me fait dire que, dans le domaine des paradoxes probabilistes, les gens sont rarement convaincus par la modélisation mathématique, même validée par les autres matheux et que nous avons tout intérêt à blinder par des sources secondaires. Remettre en cause les raisonnements d'anonymes (même s'ils se présentent comme professeurs), cela peut se concevoir, remettre en cause un savoir publié cela va s'avérer plus difficile. HB (discuter) 23 novembre 2022 à 14:46 (CET)
- Hou là ! On est d'accord qu'il peut y avoir une très longue conversation ! Par exemple, ici, j'ai pris en compte le fait que le jouet avait une chance sur deux d'être celui d'une fille dans les cas GF et FG. Je peux passer chaque jour et regarder le jouet qui traîne : un jour verrai-je celui d'un garçon ? Le calcul plus haut dit "il y a au moins une fille", mais ne fait pas changer les probabilités de GF et FG qui passent de 1/4 à 1/8 ! (Je passe sur p(GF) n'est pas à coup sûr égal à p(GF | jouet fille), ni p(FG) n'est pas à coup sûr égal à p(FG | jouet fille)). Je crois que l'on est mal parti. --Dimorphoteca (discuter) 23 novembre 2022 à 15:52 (CET)
- HB, Touriste et Dfeldmann : : Pardonnez-moi d'intervenir. Je vois bien les 2 000 cas "filles", mais sachant que l'on a un jouet de fille dans le jardin, il n'y a que 3 000 cas possibles dont 1 000 favorables (où l’autre enfant est un garçon). Donc la probabilité p(Garçon "sachant jouet de fille" et "sachant fille ouvre porte") = 1/3. Mais ai-je bien compris l'énoncé ? --Dimorphoteca (discuter) 23 novembre 2022 à 14:24 (CET)
- Oui, je suis vraiment nul, vieux et fatigué. Bon, reprenons proprement : sur 4000 couples, 1000 ont deux filles, 1000 deux garçons, et 2000 un de chaque. Sur les 3000 ayant au moins une fille, une fille ouvre la porte dans 2000 cas (tous les cas avec deux filles + la moitié des cas mixtes). Et donc la probabilité dans ce cas que l’autre enfant soit un garçon est bien 1/2. Le pire, c’est que je me rappelle enfin maintenant que ça m’avait déjà surpris quand je posais le problème en colle… Dfeldmann (discuter) 23 novembre 2022 à 14:05 (CET)
Voici mes hypothèses :
Fratrie
p(GG) = p(GF) = p(FG) = p(FF) = 1/4
Jouet dans le jardin (pour Fille ou pour Garçon)
p(JF) = p(JG) = 1/2
Enfant ouvre la porte de la maison (Fille ou Garçon)
p(PF) = p(PG) = 1/2
Le tableau de Karnaugh des probabilités (analyse de toutes les combinaisons) :
\ | JG et PG | JG et PF | JF et PG | JF et PF | Total |
---|---|---|---|---|---|
GG | 1/4 | 0 | 0 | 0 | 1/4 |
GF | 1/16 | 1/16 | 1/16 | 1/16 | 1/4 |
FG | 1/16 | 1/16 | 1/16 | 1/16 | 1/4 |
FF | 0 | 0 | 0 | 1/4 | 1/4 |
Total | 3/8 | 1/8 | 1/8 | 3/8 | 1 |
La colonne "JF et PF" montre que la probabilité cherchée (de il y a un garçon sachant qu'on a un jouet de fille dans le jardin et qu'une fille ouvre la porte) vaut
Si je considère maintenant que cette probabilité est faible ou si je vois chaque jour un jouet de fille différent, mais jamais celui d'un garçon, le 1/16 devient quasi nul, ainsi que la probabilité de voir un jour un garçon, comme expliqué plus haut et comme le montrerait la table de Karnaugh correspondante (je laisse chacun vérifier).
En conclusion : on a utilisé une technique systématique et passé en revue toutes les probabilités. C'est lourd, mais ainsi font nombre de professionnels. --Dimorphoteca (discuter) 25 novembre 2022 à 10:57 (CET)
- Ton raisonnement est tout-à-fait correct. Ton résultat est différent du nôtre car tu choisis une autre modélisation que la nôtre (peut-être d'ailleurs plus logique que la nôtre) : tu considères que la présence de jouet dans le jardin est aléatoire alors que nous n'y voyons qu'un indice de présence de fille (comme si nous avions directement posé la question aux parents : avez-vous au moins une fille ?). Comme je disais, le problème de ces exemples, c'est justement leur interprétation. D'où ma réticence à en mettre sans les sourcer. HB (discuter) 25 novembre 2022 à 11:45 (CET)
- D'accord avec toi. --Dimorphoteca (discuter) 25 novembre 2022 à 12:06 (CET)
Pardonnez-moi aussi d'intervenir : je trouve cet exercice et cette discussion intéressants mais difficiles ; alors pour faciliter la réflexion, je me suis permis de corriger quelques coquilles, de rectifier quelques oublis, et d'améliorer un peu l'homogénéité et la présentation. Je pense et j'espère n'avoir trahi la pensée de personne. 🤓 Mais j'avoue encore mal comprendre certains raisonnements de Dimorphoteca. 🥴
En tout cas, je propose de remplacer dans l'énoncé les jouets de fille dans le jardin, auxquels pourraient logiquement être adjoints des jouets de garçon un même jour (s'il y a aussi un garçon dans la fratrie) ou qui pourraient de façon réaliste ne pas être laissés forcément chaque jour dans le jardin ce qui compliquerait encore l'exercice, par quelque chose comme, après « sur leur boîte à lettres : M. et Mme Dupont et leurs deux enfants. », « Eva Dupont, Présidente du Parlement des enfants » ; c'est un peu laborieux, mais + logique, + réaliste, et − sexiste (ÀMHA). 😉
(Ajouter sur la boîte à lettres, après « et leurs deux enfants », « Cécile et Dominique » (par exemple), semble + simple ; mais alors, il faudrait connaître la proportion de garçons parmi les Dominique de la population considérée (et il serait préférable de connaître aussi cette population considérée)...) —2A01:CB00:8BE7:5800:28B3:12FB:EC14:D472 (discuter) 1 janvier 2023 à 20:54 (CET)
- Tout joue sur le degré d'aléatoire dans le premier indice. Quelques sources possibles :
- ce papier de Claudine Schwartz prenant du recul sur l'injonction quelle est la probabilité que ...
- ce papier provocateur de Léo Gerville-Réache et Vincent Couallier qui montre l'importance du choix de la modélisation
- ce compte rendu d'intervention de Davy Paindaveine aux journées mathématiques de la Belgique francophone de 2022 qui propose des variantes.
- HB (discuter) 2 janvier 2023 à 15:16 (CET)
- À HB : Oui, tout joue sur le degré d'aléatoire dans le premier indice. Merci pour toutes ces sources ; mais je dois d'abord m'éclaircir les idées sur cette variante-ci, sinon je vais m'embrouiller davantage... 😛 —2A01:CB00:8BE7:5800:70AF:515B:235:9EC5 (discuter) 2 janvier 2023 à 18:12 (CET)
- Et tant qu’à faire, rappeler une fois de plus cet excellent papier de David Madore, qui ne met certes pas fin au débat… Dfeldmann (discuter) 2 janvier 2023 à 19:01 (CET)
ÀMHA : JF considéré comme un simple indice de présence de fille, pas comme le résultat d'un processus aléatoire, complique « inutilement » l'exercice (d'ailleurs c'est intuitivement rassurant, puisque l'info « au moins un des enfants est une fille » est donnée aussi par PF). En effet, avec les hypothèses simplificatrices « réalistes » :
- p(GG) = p(GF) = p(FG) = p(FF) = 1/4,
sans l'indice JF, on a
donc
Mais c'est grâce à cette info redondante que est surprenant. 🙂
Tableau de Karnaugh des probabilités sans jouet dans le jardin (analyse de toutes les combinaisons) :
\ | PG | PF | Total |
---|---|---|---|
GG | 1/4 | 0 | 1/4 |
GF | 1/8 | 1/8 | 1/4 |
FG | 1/8 | 1/8 | 1/4 |
FF | 0 | 1/4 | 1/4 |
Total | 1/2 | 1/2 | 1 |
Cette interprétation de l'énoncé et ce raisonnement/calcul donnent le même résultat que l'interprétation de l'énoncé et les raisonnements/calculs de Dfeldmann et de HB. 🙂 —2A01:CB00:8BE7:5800:70AF:515B:235:9EC5 (discuter) 4 janvier 2023 à 03:31 (CET)
- Je m'en tiendrais à l'argument de HB qui je pense n'a pas été bien compris. En effet, on dispose d'hypothèses, mais insidieusement on en ajoute une qui peut tout modifier. Comment est l'oubli par la fille de ses jouets dans le jardin ? Soit issu d'un processus direct, soit d'un tirage au sort. D'un point de vue mathématique, les deux sont acceptables. Une fois le choix fait, la réponse en découle. Mais un débat peut naître : pourquoi l'un et pas l'autre ? Et ce long fil de discussion semble montrer que l'on ne peut pas trancher.
- Pour discuter, il faut faire un tableau de Karnaugh. Avouons que c'est assez lourd (et souvent inutile dans les cas simples). Celui plus haut souligne pourtant bien l'objet de divergence : on voit des 1/2 qui remplacent des 1 ou des 0. En d'autres termes : des tirages au sort qui remplacent un aspect systématique. Vu que cela ne figure pas dans les hypothèses, les deux approches semblent cohérentes.
- Personnellement, je pense que considérer un tirage au sort est plus proche du monde réel et offre une analyse de la situation plus précise. En effet, on remplace des 0 et des 1 par des 1/2, mais pourquoi pas tout autre valeur. Maintenant, 0 ou 1/2, on est dans l'extrapolation de ce qui n'est pas écrit dans l'énoncé qui aurait dû préciser quelque chose du genre : "On suppose que...". Dimorphoteca (discuter) 4 janvier 2023 à 08:42 (CET)
- À Dimorphoteca : moi qui pensais m'être enfin éclairci les idées...! 🥴
- « [...] des 1/2 qui remplacent des 1 ou des 0 » : de quels 1 et de quels 0 parlez-vous exactement, SVP ? Pourriez-vous remplir le tableau de Karnaugh des probabilités correspondant à l'interprétation de l'énoncé par Dfeldmann et HB , SVP ? (Je l'ai rempli au brouillon, mais mon résultat est inhabituel, et je ne veux pas vous influencer.) 😉 —2A01:CB00:8BE7:5800:70AF:515B:235:9EC5 (discuter) 4 janvier 2023 à 22:46 (CET)
Il s'agit du tableau que j'ai déjà fait et commenté !
- À Dimorphoteca : Justement pas : avec vos hypothèses, qui sont + réalistes que celles de Dfeldmann et de HB, vous obtenez un tableau de Karnaugh ≠ de celui (avec , le premier) de HB, et un résultat final : ≠ de celui (le premier) de HB : —2A01:CB00:8BE7:5800:70AF:515B:235:9EC5 (discuter) 6 janvier 2023 à 03:32 (CET)
- À 2A01:CB00:8BE7:5800:70AF:515B:235:9EC5 : C'est bien là l'intérêt d'un tableau de Karnaugh ! Si deux lecteurs ont une lecture différente, il est bien normal de voir deux tableaux, puis après de savants développements deux résultats distincts. Cela n'a rien de choquant. Dit autrement : si deux tableaux sont différents au départ, les résultats seront sûrement différents. Mon point de vue (qui ici est peut-être faux) est qu'un problème peut être lu de façon différente parce que l'on a pas tout précisé dans la question. J'extrapole : "au hasard" ne veut rien dire sauf si l'on précise loi et tutti quanti. Mais là je sors un peu du sujet. --Dimorphoteca (discuter) 6 janvier 2023 à 09:17 (CET)
- À Dimorphoteca : Vous semblez avoir trop vite lu les questions que je vous avais posées, notamment celle-ci : « Pourriez-vous remplir le tableau de Karnaugh des probabilités correspondant à l'interprétation de l'énoncé par Dfeldmann et HB, SVP ? ». 🤓
- Voici mes hypothèses simplificatrices « réalistes » :
- p(GG) = p(GF) = p(FG) = p(FF) = 1/4,
- voici mes hypothèses simplificatrices irréalistes mais difficilement évitables :
- le ou les garçon·s n'oublie·nt jamais de jouet de fille dans le jardin,
- la ou les fille·s n'oublie·nt jamais de jouet de garçon dans le jardin,
- chaque jour, s'il y a des jouets oubliés dans le jardin, alors je les vois tous ;
- voici mes hypothèses irréalistes destinées à rendre non-aléatoire la présence des jouets dans le jardin :
- donc en particulier (est-ce un des 1 dont vous parliez ?),
- donc en particulier (est-ce un des 0 dont vous parliez ?) ;
- et voici ma version du tableau de Karnaugh correspondant à la présence non-aléatoire des jouets dans le jardin (analyse de toutes les combinaisons) :
\ Total GG 1/4 0 0 0 1/4 GF 0 0 1/8 1/8 1/4 FG 0 0 1/8 1/8 1/4 FF 0 0 0 1/4 1/4 Total 1/4 0 1/4 1/2 1
Certaines valeurs peuvent faire l'objet d'un débat, car les hypothèses sont muettes à leur sujet et donc laissent le lecteur devant un choix, voire une discussion sans fin. Alors ce tableau résume une lecture, mais il est possible de changer quelques valeurs avec une autre approche. Quelles sont vos valeurs ? Je prends p(JF) = p(JG) = 1/2. Pourquoi pas. Mais l'énoncé est un peu rapide et autorise un peu ce que l'on veut, me semble-t-il ?
Ceci n'est pas seulement académique, car il faut pouvoir répondre à une question simple mais fondamentale du type "Si je fais 1 000 expériences, combien de fois vois-je un jouet dans le jardin ?". Cette question montre que le jouet dans le jardin est bien une variable aléatoire. Mais j'ai l'impression qu'elle n'est pas la même pour tout le monde. Il faut effectivement mettre les différents tableaux possibles côte à côte, et débattre. Maintenant, on entre dans le TI. --Dimorphoteca (discuter) 5 janvier 2023 à 09:15 (CET)
- Voici la version de HB (je ne parle pas pour Dfeldmann) : il n'y a pas d'aléatoire dans les jouets du jardin, il y a toujours des jouets mixtes, mais il n'y a des jouets de filles en + des mixtes que s'il y a des filles. Si on reprend le tableau de Dimorphoteca en notant l'événement "il y a des jouets mixtes mais pas de jouet de fille", on obtient un tableau analogue à celui de Dimorphoteca mais rempli différemment :
- Analyse de toutes les combinaisons :
\ Total GG 1/4 0 0 0 1/4 GF 0 0 1/8 1/8 1/4 FG 0 0 1/8 1/8 1/4 FF 0 0 0 1/4 1/4 Total 1/4 0 1/4 1/2 1
- et p(famille mixte sachant qu'il y a des jouets de fille et qu'une fille ouvre la porte) = 1/2.
- Tout ceci pour le fun et pas vraiment pour construire l'article. Pour construire l'article, s'appuyer sur des sources. HB (discuter) 5 janvier 2023 à 14:38 (CET)
- À HB : Merci d'avoir répondu à 1 de mes questions (que j'avais posées à Dimorphoteca 😉) ; mais ton dispositif (malin) utilisant des jouets mixtes :
- T'oblige à faire les hypothèses irréalistes : ▪︎ qu'il n'y a pas de jouet genré pour garçon, et ▪︎ que la ou les fille·s laisse·nt chaque jour à la fois des jouets de fille et des jouets mixtes dans le jardin. En effet : si la ou les fille·s pouvaient laisser certains jours seulement des jouets de fille dans le jardin, alors juste en voyant ces jouets, on déduirait qu'il n'y a pas de garçon dans la fratrie (car impliquerait ) ; et si la ou les fille·s pouvaient laisser certains jours seulement des jouets mixtes dans le jardin, alors en voyant ces jouets, on n'aurait aucune indication sur les sexes des enfants de la fratrie (car GG, et FF pourraient laisser certains jours seulement des jouets mixtes dans le jardin).
- N'empêche pas ton tableau de Karnaugh d'être presque comme mon 1er tableau (celui sans jouet dans le jardin) : avec presque seulement des cases nulles supplémentaires, et d'être rempli exactement comme mon 2ème tableau (celui avec des et des JF). 🤓
- Conclusion : faire figurer (dans l'énoncé) les jouets dans le jardin complique beaucoup l'exercice.
- Et rassurez-vous tous : je n'ai absolument pas l'intention de mettre cette variante (ni aucune autre) dans l'article. —2A01:CB00:8BE7:5800:70AF:515B:235:9EC5 (discuter) 6 janvier 2023 à 03:32 (CET)
- À 2A01:CB00:8BE7:5800:70AF:515B:235:9EC5 : Je ne suis pas d'accord avec votre vision, car elle va à l'encontre de ce qui était enseigné en cours de logique booléenne par exemple : on commence par un tableau complet, puis on simplifie si toutefois le tableau s'y prête. N'oubliez pas : il faut pouvoir répondre à une question du type : combien de fois voit-on un jouet si l'on fait l'expérience mille fois ? En supprimant la variable (même si la simplification a ses vertus), on laisse l'interlocuteur dans le doute. --Dimorphoteca (discuter) 6 janvier 2023 à 09:09 (CET)
- À Dimorphoteca : Bien sûr, si les jouets dans le jardin figurent dans l'énoncé, alors il faut les faire figurer aussi dans les hypothèses, les calculs, et le tableau de Karnaugh ; j'ai clarifié mes commentaires/conclusions sur ce point (et je les ai modifiés par ailleurs). 😛
- À 2A01:CB00:8BE7:5800:70AF:515B:235:9EC5 : Je ne suis pas d'accord avec votre vision, car elle va à l'encontre de ce qui était enseigné en cours de logique booléenne par exemple : on commence par un tableau complet, puis on simplifie si toutefois le tableau s'y prête. N'oubliez pas : il faut pouvoir répondre à une question du type : combien de fois voit-on un jouet si l'on fait l'expérience mille fois ? En supprimant la variable (même si la simplification a ses vertus), on laisse l'interlocuteur dans le doute. --Dimorphoteca (discuter) 6 janvier 2023 à 09:09 (CET)
- Bravo, HB ! Mais pour être plus fun, il faudrait d'autres tableaux, et obtenir d'autres valeurs. C'est possible. Par exemple, je passe tous les soirs et il y a rarement un jouet oublié. Puis je passe tous les soirs et je vois toujours un jouet de fille oublié. Bien sûr, il faut voir les cas intermédiaires : je vois un jouet de fille un seul soir, deux soirs, une infinité de fois... Mais on est vraiment dans le TI. --Dimorphoteca (discuter) 5 janvier 2023 à 15:19 (CET)
- Qu'à cela ne tienne ! Avec les hypothèses : jouets genrés, présence aléatoire de jouet dans le jardin, mais il y a chaque jour un jouet dans le jardin, et les filles (plus soigneuses que les garçons) laissent moins souvent traîner un jouet :
- Analyse de toutes les combinaisons :
- À HB : Merci d'avoir répondu à 1 de mes questions (que j'avais posées à Dimorphoteca 😉) ; mais ton dispositif (malin) utilisant des jouets mixtes :
\ JG et PG JG et PF JF et PG JF et PF Total GG 1/4 0 0 0 1/4 GF 3/32 3/32 1/32 1/32 1/4 FG 3/32 3/32 1/32 1/32 1/4 FF 0 0 0 1/4 1/4 Total 7/16 3/16 1/16 5/16 1
- p(famille mixte sachant qu'il y a un jouet de fille et qu'une fille ouvre la porte) = 1/5.
- HB (discuter) 5 janvier 2023 à 15:40 (CET)
- À HB : Désolé de te relancer sur ce sujet, mais j'ai tenté de préciser ton hypothèse « les filles laissent moins souvent un jouet dans le jardin que les garçons », et je crois que ça m’a fait déceler des incohérences dans ta (3ème) modélisation :
- autrement dit : si une fille a un frère, alors elle laisse un jouet (de fille) dans le jardin 1 jour / 4 ;
- alors que :
- autrement dit : si une fille a une sœur, alors elle laisse un jouet (de fille) dans le jardin 1 jour / 2.
- Bien sûr, il y a une incohérence similaire pour un garçon. —2A01:CB00:8BE7:5800:842A:FA0B:61EF:D9F8 (discuter) 11 janvier 2023 à 04:25 (CET)
- Tu oublies de tenir compte du fait que je me restreins au cas où je vois un jouet (ce que j'annonçais dans l'intro que tu as modifiée, sachant que je vois un jouet et qu'il y a 2 filles à la maison, la probabilité que ce soit un jouet de garçon est ... nulle. Mais, plus globalement, tu essaies de faire coller à mon exemple de tableau de Karnaugh (qui est une modélisation à part entière), un modèle aléatoire sous-jacent fait d'événements tous indépendants (pourquoi?) mais lesquels? (un jouet a été laissé dans le jardin et je l'ai vu, des jouets ont été laissé et j'en a vu un, des jouets ont été laissé et je n'ai pas vu de jouet de fille, etc....). Moi, je n'ai pas cherché de modèle aléatoire sous-jacent (ce qui rend, je le reconnais, mon modèle moins réaliste). C'est pourquoi je pense qu'il vaut mieux arrêter les spéculations ici. HB (discuter) 11 janvier 2023 à 07:56 (CET)
- À HB : Tu n'es bien sûr pas obligé·e de me répondre à nouveau.
- Je crois pouvoir déduire de ta dernière réponse que j'aurais dû remplacer « contradictions » par « incohérences » ; je viens de le faire.
- Je tiens forcément compte du fait que tu te restreins au cas « je vois un jouet », puisque chaque colonne de ton tableau de Karnaugh est soit dans le cas JG soit dans le cas JF ; pour clarifier mes notations, je viens d'ajouter « » ou « » en indice de mes probabilités. Et dans ton intro, j'avais remplacé « il y a un jouet dans le jardin » par « il y a chaque jour un jouet dans le jardin », pour introduire l'idée (chère à Dimorphoteca) de répétitions possibles, mais toujours avec un jouet (renouvelé).
- Je n'ai jamais dit le contraire de « » ; l'incohérence similaire que j'évoquais pour un garçon est la suivante :
- autrement dit : si un garçon a une sœur, alors il laisse un jouet (de garçon) dans le jardin 3 jours / 4 ;
- alors que :
- autrement dit : si un garçon a un frère, alors il laisse un jouet (de garçon) dans le jardin 1 jour / 2.
- On peut montrer cette incohérence sans appliquer de modèle aléatoire sous-jacent où les deux enfants laissent des jouets dans le jardin indépendamment l'un de l'autre ; ton tableau donne :
- alors qu'il utilise (légitimement) l'hypothèse : —2A01:CB00:8BE7:5800:9B7:1B16:D00A:32AA (discuter) 12 janvier 2023 à 03:04 (CET)
- Tu oublies de tenir compte du fait que je me restreins au cas où je vois un jouet (ce que j'annonçais dans l'intro que tu as modifiée, sachant que je vois un jouet et qu'il y a 2 filles à la maison, la probabilité que ce soit un jouet de garçon est ... nulle. Mais, plus globalement, tu essaies de faire coller à mon exemple de tableau de Karnaugh (qui est une modélisation à part entière), un modèle aléatoire sous-jacent fait d'événements tous indépendants (pourquoi?) mais lesquels? (un jouet a été laissé dans le jardin et je l'ai vu, des jouets ont été laissé et j'en a vu un, des jouets ont été laissé et je n'ai pas vu de jouet de fille, etc....). Moi, je n'ai pas cherché de modèle aléatoire sous-jacent (ce qui rend, je le reconnais, mon modèle moins réaliste). C'est pourquoi je pense qu'il vaut mieux arrêter les spéculations ici. HB (discuter) 11 janvier 2023 à 07:56 (CET)
On me relance une nouvelle fois, plus haut dans ce fil. Je préfère répondre à la suite pour plus de clarté. Résumons la situation. On peut considérer deux cas :
1 - Le jouet de fille est issu d'un tirage aléatoire. En effet, on a quatre issues : le jouet est de fille, de garçon, mixte, ou absent. L'énoncé est silencieux à ce sujet.
2 - Il n'y a pas de tirage aléatoire. Cela revient à considérer égales à 0 ou à 1 certaines des probabilités des quatre issues précédentes. L'énoncé est silencieux à ce sujet aussi.
Pour considérer les deux cas "en même temps", c'est-à-dire avec la "même" table de Karnaugh, il faut un paramètre : la probabilité pour une fille d'oublier un jouet (de fille). À celle-ci, on assigne toutes les valeurs possibles de 0 à 1. Je considère deux cas à ce "tirage au sort" : le jouet de fille est présent ou le jouet de fille est absent. Si cela paraît simple, il faut se méfier : il est évident que si l'on a deux garçons, il n'y aura jamais de jouet de fille. Mais s'il y a deux filles, on a une probabilité plus grande d'avoir un ou deux jouets de fille. D'accord ? Pas si sûr, la probabilité qu'un garçon joue avec un jouet de fille et vice-versa n'est pas nulle. De plus, si l'on a deux filles, on doit examiner la probabilité de voir deux jouets de fille ! D'accord ? Pas si sûr non plus ! Je peux voir un seul jouet sur les deux, ou pire : aucun des deux, car ils me sont cachés par autre chose.
Faisons abstraction des cas où il y aurait des jouets de garçon, dont le nombre peut aussi être égal à 0, à 1, ou à 2 ! Avouons que si cela simplifie notre étude, on peut se dire que ce n'est pas totalement rigoureux.
Considérons les oublis de jouet par la ou les fille·s :
- JF : je vois au moins un jouet de fille,
- : je ne vois aucun jouet de fille,
et faisons les hypothèses simplificatrices (irréalistes mais difficilement évitables) que le ou les garçon·s n'oublie·nt jamais de jouet de fille dans le jardin, et que la ou les fille·s n'oublie·nt jamais de jouet de garçon dans le jardin :
- je considère égale à 0 la probabilité pour un garçon d'oublier un jouet de fille,
- je considère égale à 0 la probabilité pour une fille d'oublier un jouet de garçon.
A - Si je considère égale à 1 la probabilité pour une fille d'oublier un jouet (de fille) :
\ | et PG | et PF | JF et PG | JF et PF | Total |
---|---|---|---|---|---|
GG | 0,25 | 0 | 0 | 0 | 0,25 |
GF | 0 | 0 | 0,125 | 0,125 | 0,25 |
FG | 0 | 0 | 0,125 | 0,125 | 0,25 |
FF | 0 | 0 | 0 | 0,25 | 0,25 |
Total | 0,25 | 0 | 0,25 | 0,50 | 1 |
alors
B - Si je considère égale à 0,50 la probabilité pour une fille d'oublier un jouet (de fille) :
\ | et PG | et PF | JF et PG | JF et PF | Total |
---|---|---|---|---|---|
GG | 0,25 | 0 | 0 | 0 | 0,25 |
GF | 0,0625 | 0,0625 | 0,0625 | 0,0625 | 0,25 |
FG | 0,0625 | 0,0625 | 0,0625 | 0,0625 | 0,25 |
FF | 0 | 0,0625 | 0 | 0,1875 | 0,25 |
Total | 0,375 | 0,1875 | 0,125 | 0,3125 | 1 |
alors
C - Si je considère égale à (proche de 0) la probabilité pour une fille d'oublier un jouet (de fille), j’obtiens une valeur limite (depuis une forme "indéterminée" du type 0 sur 0) :
\ | et PG | et PF | JF et PG | JF et PF | Total |
---|---|---|---|---|---|
GG | 0,25 | 0 | 0 | 0 | 0,25 |
GF | 0,25 | ||||
FG | 0,25 | ||||
FF | 0 | 0 | 0,25 | ||
Total | 1 |
on vérifie que :
alors
quand
CONCLUSION : la probabilité pour une fille d'oublier un jouet (de fille) influe sur le résultat, qui peut prendre toutes les valeurs possibles entre 1/3 et 1/2. Cela me paraît logique, mais après bien des considérations simplificatrices sur tous les cas possibles. --Dimorphoteca (discuter) 7 janvier 2023 à 18:41 (CET)
- (*)
- Je crois que les hypothèses simplificatrices (irréalistes mais difficilement évitables) :
- « le ou les garçon·s n'oublie·nt jamais de jouet de fille dans le jardin »,
- « la ou les fille·s n'oublie·nt jamais de jouet de garçon dans le jardin »
- créent des cas triviaux :
- et
- Notre cas : s'il y a un garçon dans la fratrie, et s'il oublie un jouet (de garçon) dans le jardin un même jour que sa sœur y oublie un jouet (de fille), alors en voyant ces jouets, on déduit qu'il y a un garçon dans la fratrie : La dernière modélisation (triple) masque ce cas trivial.
- ÀMHA : Si on garde dans l'énoncé les jouets dans le jardin, alors on doit y ajouter, après « je remarque dans le jardin des jouets de fille », qqch comme « et aucun jouet de garçon », et on doit calculer
- Je crois que l'hypothèse (irréaliste et facilement évitable) :
- « chaque enfant oublie 0 ou exactement 1 jouet (de son sexe) dans le jardin chaque jour »
- crée des cas triviaux :
- et
- Notre cas : s'il y a 2 filles dans la fratrie, et si elles oublient chacune exactement 1 jouet (de fille) dans le jardin un même jour, alors en voyant ces exactement 2 jouets de fille, on déduit qu'il y a 2 filles dans la fratrie, et donc pas de garçon :
- ÀMHA : Si on garde dans l'énoncé les jouets dans le jardin, alors on ne doit pas faire l'hypothèse que chaque enfant oublie au plus 1 jouet (de son sexe) dans le jardin chaque jour. D'ailleurs, ne pas faire cette hypothèse faussement simplificatrice ne change pas les calculs, juste leurs significations.
- Voici mes hypothèses simplificatrices « réalistes » :
- p(GG) = p(GF) = p(FG) = p(FF) = 1/4,
- voici mes hypothèses simplificatrices irréalistes mais difficilement évitables :
- le ou les garçon·s n'oublie·nt jamais de jouet de fille dans le jardin,
- la ou les fille·s n'oublie·nt jamais de jouet de garçon dans le jardin,
- chaque jour, s'il y a des jouets oubliés dans le jardin, alors je les vois tous ;
- en notant j la probabilité pour un enfant, garçon ou fille, d'oublier des jouets de son sexe dans le jardin, éventuellement avec des jouets mixtes,
- en notant k la probabilité pour un enfant, garçon ou fille, de ne pas oublier de jouet de son sexe dans le jardin, mais éventuellement des jouets mixtes, on a :
- et (À vérifier.) 🥴
- La possibilité d'oublier des jouets mixtes rend la modélisation + réaliste, et ne change pas les calculs (puisque les jouets mixtes ne donnent aucune indication sur les sexes des enfants de la fratrie). Cette dernière modélisation présente 2 cas triviaux : voir (*) ci-dessus.
- Pour que ce résultat soit surprenant, il faut que c.-à-d. c.-à-d. c.-à-d. (À vérifier.) —2A01:CB00:8BE7:5800:842A:FA0B:61EF:D9F8 (discuter) 11 janvier 2023 à 04:25 (CET)
- Pour ma part, j'abandonne ce sujet car je trouve que cette discussion vire un peu trop au forum de math et je ne vois pas en quoi elle va conduire à une amélioration significative de l'article. J'ajoute juste une petite remarque à l'attention de IP:2A01:CB00:8BE7:5800:* (que je ne vois pas comment joindre autrement qu'ici): ne prends pas l'habitude d'effectuer des retouches sur les écrits des autres contributeurs lors d'une discussion. C'est souvent mal perçu et tu cours le risque de déformer leur pensée (et tant pis pour les maladresses d'expressions, les raccourcis dangereux et les fautes de français qui risqueraient de subsister). HB (discuter) 9 janvier 2023 à 07:57 (CET)
- Je me range à ce dernier avis. On n'a pas de sources, même si les échanges sont constructifs. Et même si on en avait, on risquerait un débat houleux. --Dimorphoteca (discuter) 9 janvier 2023 à 08:58 (CET)
- Si un jour on voit dans une publication fiable cette variante (ou une version très proche), alors on envisagera peut-être d'ajouter à l'article cette variante (ou cette version très proche) avec cette source, et cette discussion fastidieuse sur ce sujet n'aura pas été inutile.
- À propos de mes retouches : oui... D'habitude, j'en fais beaucoup moins ; ces probabilités conditionnelles très sensibles m'ont poussé à clarifier le + possible. Merci de ne pas en avoir pris ombrage ! 🙂 —2A01:CB00:8BE7:5800:842A:FA0B:61EF:D9F8 (discuter) 11 janvier 2023 à 04:25 (CET)
- Je me range à ce dernier avis. On n'a pas de sources, même si les échanges sont constructifs. Et même si on en avait, on risquerait un débat houleux. --Dimorphoteca (discuter) 9 janvier 2023 à 08:58 (CET)
Rendre doublement + réaliste le tout dernier exemple de l'article
[modifier le code]Voici le tout dernier exemple de l'article actuel :
On a dix dés (de six faces chacun) dont sept ont les chiffres gravés, les autres les chiffres peints. Les dés sont mélangés ; un dé est choisi au hasard et lancé. Puis les dés sont mélangés à nouveau ; un dé est à nouveau choisi au hasard et lancé. On obtient l’information suivante sur ces deux jets de dé(s) : « il y a eu au moins un As avec chiffre gravé » ; l’information est reçue dans un mode qui permet d’assurer qu’aucun dé n’a été spécifiquement désigné. Quelle est la probabilité qu’il y ait eu deux As ?
Je propose de le rendre doublement + réaliste :
Dix dés indiscernables au toucher (de six faces chacun) sont dans une urne (opaque) ; sept de ces dés sont rouges, les autres sont blancs. Les dés sont mélangés ; un dé est choisi au hasard et lancé. Puis ce dé est remis dans l'urne, et les dés sont mélangés à nouveau ; un dé est à nouveau choisi au hasard et lancé. On obtient l’information suivante sur ces deux jets de dé(s) : « il y a eu au moins un As rouge » ; l’information est reçue dans un mode qui permet d’assurer qu’aucun dé n’a été spécifiquement désigné. Quelle est la probabilité qu’il y ait eu deux As ?
Que pensez-vous de ces aménagements, SVP ? —2A01:CB00:8BE7:5800:E422:3F12:7C44:9A31 (discuter) 28 janvier 2023 à 20:21 (CET)
- Les deux sections Généralisation et Extension sont totalement dénuées de toute référence et relèvent clairement d'un travail inédit. Elles doivent être supprimées. Theon (discuter) 29 janvier 2023 à 10:55 (CET)
- Aïe ! J'aurais dû y penser, car je me demandais pourquoi la « finition » de toute la fin de l'article était nettement moins bonne que celle de tout le début...
- Mais le·s contributeur·s qui a·ont fait référence dans l'article à Jean-Paul Delahaye, à Jacques Patarin, et à Pierre-Henry Ladame, devrai·en·t pouvoir les citer dans la fin de l'article aussi.
- Ceci dit, tous les bandeaux qui ont été ajoutés mettent assez les lecteurs en garde, puisque le contenu de la fin de l'article est correct aussi (il faut juste ajouter « ce dé est remis dans l'urne, et » dans le tout dernier exemple). —2A01:CB00:8BE7:5800:D06D:3EDC:AE6A:76FD (discuter) 29 janvier 2023 à 21:22 (CET)
- Je partage l'opinion de Theon. On ne doit garder dans l'article que ce qui s'appuie sur des sources (cela évitera de tenter de faire des dems persos actuellement confuses et en doublon).
- Dans la section Généralisation sont cités Jean-Paul Delahaye et Pierre-Henri Ladame mais sans références sérieuses. Si on ne peut pas renvoyer vers un article précis publié (évitons facebook) , cela me parait contrevenir à la règle de vérifiabilité
- Idem pour la section sur les dés. Sans texte vérifiable à la clé les nom cités ne sont que des incantations. (je n'ai rien trouve qui s'y approche dans les publication de Ladame sur publimath)
- HB (discuter) 30 janvier 2023 à 09:00 (CET)
- Je partage aussi l'opinion de Theon. Que l'on vérifie le sérieux d'une source est louable. C'est effectivement nécessaire. Mais ici, on va largement au-delà du simple commentaire. --Dimorphoteca (discuter) 30 janvier 2023 à 09:05 (CET)
- Je partage l'opinion de Theon. On ne doit garder dans l'article que ce qui s'appuie sur des sources (cela évitera de tenter de faire des dems persos actuellement confuses et en doublon).
- La différence entre Delahaye, Patarin et Ladame est la suivante. Une source sur Delahaye est donnée (Jean-Paul Delahaye, « Le trésor et les Sophies », Pour la science n° 336, octobre 2005). Celle sur Patarin est un lien brisé depuis un an et demi. Je me propose de supprimer le dit lien et l'affirmation qui lui est jointe si personne n'est en mesure d'en donner un nouveau dans les jours qui suivent. Il n'y a aucune source sur Ladame. Aucune source n'est donnée pour les deux parties Généralisation et Extension. Theon (discuter) 30 janvier 2023 à 10:13 (CET)
- Concernant Patarin, on ne peut pas supprimer la mention de son nom. Si j'en crois l'article de pour la science (mis en ligne ici [2] sans véritable droit je pense), l'idée d'imaginer un paramètre p continu doit lui être attribué. Le lien mort est un fichier déposé sur Commons par Tlma, probablement un proche de Jacques Patarin.
- A mon avis, on doit continuer à citer Patarin dans la section Prénom (avec source Delahaye p. 93) et ajouter dans cette section la remarque figurant actuellement dans la section généralisation (pourquoi cette distinction?) :
- Plus généralement, Jean-Paul Delahaye (source Delahaye p. 93) montre que la probabilité que les deux enfants soient du même sexe sachant qu'au moins l'un d'eux est une fille ayant une particularité advenant avec une probabilité , est égale à
- (on peut aussi ajouter la source Claudine Schwarz pour donner un lien accessible sur une dem pour la formule (2-p)/(4-p) et des commentaires sur les raisonnements de Delahaye )
- et virer tout le reste des deux dernières sections. HB (discuter) 30 janvier 2023 à 11:08 (CET)
- À HB : merci d'avoir cherché des sources, et d'avoir détaillé ici ta recherche.
- À propos des démonstrations persos actuelles, sans parler de celle de l'encadrement 1/3 ≤ (2-p)/(4-p) < 1/2 : je dirais que la 1ère (sur l'exemple du jour de naissance) est pédagogique et − rigoureuse, et que l'autre (générale) est + abstraite. Mais qu'y trouves-tu confus, exactement ? 🥴
- Concernant la remarque figurant actuellement dans la section Généralisation : la version vraiment actuelle est :
- Plus généralement, Jean-Paul Delahaye montre que la probabilité que les deux enfants soient du même sexe sachant qu'au moins l'un d'eux est une fille, avec une particularité ayant la probabilité d’apparaître pour toute fille, est égale à
- C'est pour pointer que :
- la particularité peut ne jamais apparaître pour les garçons ;
- contrairement à l'énoncé original, cette variante ne stipule pas que les deux enfants soient de la même fratrie, et n'exclut donc pas qu'iels aient le même prénom. 🤓
- PS : j'aurais préféré savoir que vous comptiez tous supprimer les dernières parties de l'article, avant que je les « arrange » aussi... 😛 —2A01:CB00:8BE7:5800:34F7:3C50:A75B:BC87 (discuter) 30 janvier 2023 à 22:31 (CET)
- Pardon, j'avoue qu'après la discussion précédente j'avais lâchement confié la surveillance de l'article à d'autres, leur laissant l'initiative de négocier le contenu. Ce qui explique ce retard. Ce n'est pas respectueux, ni pour toi qui t'es engagé dans un travail au final inutile (quoique... si tu n'avais pas soulevé la faiblesse de la fin de l'article, peut-être serait-il resté sous cette forme peu admissible), ni pour Theon qui a été obligé de se manifester. HB (discuter) 31 janvier 2023 à 07:25 (CET)
- Pour ma part, j'avais fait de même. J'avais clairement annoncé que je me retirais du sujet, ayant il est vrai largement commenté le sujet et constaté que l'on avait passé sur du TI (d'un bon niveau, je pense). La situation est ennuyeuse pour certains. --Dimorphoteca (discuter) 31 janvier 2023 à 10:07 (CET)
- Pardon, j'avoue qu'après la discussion précédente j'avais lâchement confié la surveillance de l'article à d'autres, leur laissant l'initiative de négocier le contenu. Ce qui explique ce retard. Ce n'est pas respectueux, ni pour toi qui t'es engagé dans un travail au final inutile (quoique... si tu n'avais pas soulevé la faiblesse de la fin de l'article, peut-être serait-il resté sous cette forme peu admissible), ni pour Theon qui a été obligé de se manifester. HB (discuter) 31 janvier 2023 à 07:25 (CET)
- J'observe que le premier avertissement sur le manque de sources date du 23 novembre 2022, et que ce type de mise en garde a été renouvelé plusieurs fois au cours du fil de discussion, visiblement sans aucun succès. On ne peut donc pas arguer d'un effet de surprise, et ce n'est pas la longueur du travail qui a été fait dans ces derniers jours qui compte, mais sa validité, qui doit s'appuyer sur des sources. Wikipedia n'est pas un site de publication de travaux personnels. Les propositions faites par HB semblent pertinentes : conserver le nom de Patarin, cité par Delahaye (sourcé), conserver la formule (2-p)/(4-p) avec comme source Delahaye et Schwarz. Theon (discuter) 31 janvier 2023 à 15:36 (CET)
- À Theon : les avertissements que vous mentionnez sur le manque de sources concernaient l'ajout éventuel d'une autre variante (celle de Dfeldmann), pas les « arrangements » du contenu déjà présent dans l'article. Et justement : voyant que l'article et sa PDD sont suivis par plusieurs personnes intraitables sur le sourçage, je pensais qu'il était suffisamment sourcé. Je n'ai pas investigué davantage les sources, car j'ai le malheur de préférer qu'un article (traitant d'un sujet que je peux essayer de comprendre, pas de physique quantique...) explique clairement son contenu plutôt qu'il blinde ses sources... Je n'ai ajouté aucune « trouvaille » personnelle à l'article. —2A01:CB00:8BE7:5800:34F7:3C50:A75B:BC87 (discuter) 31 janvier 2023 à 18:06 (CET)
- Mis en place du dégraissage. Ĩl fallait bien s'y résoudre... On peut se faire des réflexions personnelles nombreuses, imaginer des simulations, des démonstrations originales mais pour éviter des développements qui risquent de donner lieu à de (trop) longues discussions en page de discussion, il me parait plus prudent de se limiter à (et de renvoyer vers) des textes déjà publiés. Il y a probablement d'autres publications que l'on pourrait mettre dans la section biblio et que l'on pourrait exploiter. Cependant, suivre cet article et toutes les discussion qu'il suscite est trop fatigant pour moi. Aux autres maintenant de prendre en charge. HB (discuter) 4 février 2023 à 14:16 (CET)
- À Theon : les avertissements que vous mentionnez sur le manque de sources concernaient l'ajout éventuel d'une autre variante (celle de Dfeldmann), pas les « arrangements » du contenu déjà présent dans l'article. Et justement : voyant que l'article et sa PDD sont suivis par plusieurs personnes intraitables sur le sourçage, je pensais qu'il était suffisamment sourcé. Je n'ai pas investigué davantage les sources, car j'ai le malheur de préférer qu'un article (traitant d'un sujet que je peux essayer de comprendre, pas de physique quantique...) explique clairement son contenu plutôt qu'il blinde ses sources... Je n'ai ajouté aucune « trouvaille » personnelle à l'article. —2A01:CB00:8BE7:5800:34F7:3C50:A75B:BC87 (discuter) 31 janvier 2023 à 18:06 (CET)
Acquisition de l'information: «l'information peut être obtenue de ≠tes manières:»
[modifier le code]A l'IP 2a01:cb00:8be7...
Ce que dit Gardner p.226 (le document est accessible par emprunt): il parle d'une faille (failure) dans la procédure du chap.14. Il indique que les lecteurs ont pointé du doigt à juste titre que cela dépendait de la procédure selon laquelle l'information "au moins un garçon" est obtenue. Il indique alors la première procédure ; traduction : si parmi toutes les familles avec deux enfants dont au moins un est un garçon, une famille est choisie au hasard, alors la réponse est 1/3. Ensuite il évoque la seconde procédure : parmi les familles de deux enfants, on choisit une famille au hasard ; si il y a 2 garçons l'informateur répond "au moins 1 garçon", pour 2 filles "au moins une fille", et pour une fratrie mixte, au hasard.
Ce n'était pas exactement ce qui figurait dans la section (non sourcée) que j'ai modifiée. Je n'ai pas pour habitude d'effacer purement et simplement le texte existant (sauf nécessité). Mais je ne pouvais pas mettre la source Gardner et laisser un exposé qui ne correspondait pas à cette source. J'ai donc modifié "a minima" - avec hélas un «été» parasite - en mettant la source au bon endroit et en indiquant que les deux processus (pour éliminer les familles à deux filles ajout du 10/02/23) donnaient le même résultat.
C'est toi qui modifie ensuite le texte en t'éloignant considérablement de la source. Cela m'a paru gênant mais je ne suis pas propriétaire de l'article. Ce que je ne comprends pas, c'est que tu modifies et que tu insistes plusieurs fois sur le fait que tu n'es pas sûr du résultat.
- Si tu n'étais pas sûr de la modif, pourquoi l'entreprendre? Autant rester sur ma version en enlevant le «été».
- Si ton doute est sur le raisonnement de Gardner, (que je trouve pour ma part valide), il n'y a rien à faire puisque je cite une source réputée solide.
- Si ton doute est sur autre chose, il faut l'expliciter pour qu'on puisse éventuellement corriger.
HB (discuter) 7 février 2023 à 07:51 (CET)
- Désolé, je voulais pas commencer 1 discussion avant de m'être éclairci les idées... Et re-désolé, l'explication de Gardner continue à me paraître doublement trompeuse :
- 1ère procédure :
- Si parmi toutes les familles avec 2 enfants dont au moins 1 est un garçon, une famille est choisie au hasard, alors la réponse est 1/3.
- Cette phrase semble dire qu'on savait déjà que M. Smith a au moins 1 garçon, avant de lui demander « Avez-vous au moins 1 garçon ? ». Mais tout ce qu'on savait avant d'interroger M. Smith, c'est qu'il a exactement 2 enfants.
- ÀMHA, Gardner aurait dû dire qqch comme :
- Pour calculer qui sert ensuite à calculer on peut éliminer les familles avec 2 filles.
- Et alors, pour ne pas induire les lecteurs en erreur, il faudrait mettre une phrase homologue pour la 2ème procédure :
- Pour calculer qui sert ensuite à calculer on peut aussi éliminer les familles avec 2 filles.
- Autre formulation, peu formelle :
- ÀMHA, Paradoxe des deux enfants#Énoncé original##Critiques###Acquisition de l'information devrait dire qqch comme :
- Parmi toutes les familles avec 2 enfants, ont répondu « Oui. » à la question « Avez-vous au moins 1 garçon ? », et ont 2 garçons ; donc la probabilité conditionnelle recherchée vaut
- 2ème procédure :
- Parmi les familles avec 2 enfants, on choisit une famille au hasard. S'il y a 2 garçons, M. Smith répond « (au moins) 1 garçon » ; si 2 filles, « (au moins) 1 fille » ; si 1 garçon et 1 fille, « (au moins) 1 garçon » ou bien « (au moins) 1 fille », au hasard.
- Certes ; mais alors, pour ne pas induire les lecteurs en erreur, il faudrait mettre un passage homologue pour la 1ère procédure :
- Parmi les familles avec 2 enfants, on choisit une famille au hasard. S'il y a 2 garçons, M. Smith répond « oui » ; si 2 filles, « non » ; si 1 garçon et 1 fille, « oui ».
- Autre formulation, peu formelle :
- ÀMHA, Paradoxe des deux enfants#Énoncé original##Critiques###Acquisition de l'information devrait dire qqch comme :
- Parmi toutes les familles avec 2 enfants, ont répondu « (au moins) 1 garçon » à la demande « Indiquez-moi le sexe de l'un de vos enfants. », et ont 2 garçons ; donc la probabilité conditionnelle recherchée vaut 😛 —
- 2A01:CB00:8BE7:5800:B52A:3030:F29:2951 (discuter) 9 février 2023 à 01:05 (CET)
- As-tu lu Gardner? As-tu lu la traduction que j'en fais sur cette page de discussion ? As-tu lu la transcription que j'en avais faite dans l'article avant ta modification? À aucun moment il n'est dit que dans la procédure n°1 selon Gardner, on pose une question à Smith. C'est justement parce qu'on ne pose pas de question à Smith dans la procédure n°1 selon Gardner que j'avais modifié le texte de l'article, en mettant la procédure de Gardner (sourcée), suivie de la procédure équivalente présente avant mon intervention (en séparant les deux procédures par un « ou bien - ce qui revient au même - ». C'est toi qui a mélangé les deux processus concernant la procédure n°1 dans cette modification.
- Mais je ne compte plus m'investir dans cet article dont je n'approuve pas en fait le contenu, rempli de considérations TI sur l'hermaphrodisme ou la gémellité di-mono-zygote, avec des démonstrations doubles (tableau + proba conditionnelle) type ceinture et bretelle - Pourquoi pas alors ajouter, tant qu'on y est, une démonstration par arbre de proba? - sans désir de s'appuyer sur des sources pourtant très nombreuses et associé à une page de discussion de plus en plus forum de math avec quelqu'un qui modifie en plus le texte des autres.
- Je retire donc cette page de ma liste de suivi. HB (discuter) 10 février 2023 à 08:01 (CET)
- Droit de réponse à HB :
- J'avais bien sûr lu la traduction que tu en fais sur cette page de discussion, et la transcription que tu en avais faite dans l'article avant que je la modifie (puis la rétablisse) ; mais je n'ai pas lu Gardner, car emprunter un livre physique à l'étranger est compliqué et surtout coûteux. Comme tu m'as interpellé avec véhémence, je me demande maintenant (malgré qu'Open Library précise si chacun de ses livres est disponible ou non) si tu parles d'un « emprunt » informatique ? Si oui, alors je ferai peut-être cet « emprunt », car l'explication de Gardner me semble noyer le poisson dans toutes les familles avec deux enfants dont au moins un est un garçon, si il ne précise pas comment on a appris que chacune de ces familles a au moins un garçon... 🥴
- Rassurez-vous tous : même si il ne précisait pas comment on a acquis ces informations, je ne proposerais pas de supprimer la référence à Gardner. Mais alors, je suggérerais d'ajouter une NDBP : pour pointer cette difficulté, et peut-être expliquer pourquoi ce raisonnement serait quand même valide (?).
- Un tableau illustre une situation de façon synthétique, mais ne justifie généralement pas grand-chose (incompatibilité, équiprobabilité, indépendance...) ; une démonstration comporte des raisonnements (et souvent des calculs) qu'on ne peut généralement pas mettre dans un tableau.
- Insérer « ?ne? » et « ?pas? » dans une de tes phrases était bien sûr une façon simple et concise de te demander s'il fallait insérer « ne » et « pas » dans cette phrase, et de te permettre de me répondre de façon simple et concise (ce que tu as fait, et je t'en remercie). (Je n'avais pas mentionné ces inserts dans mon résumé de modif, car ils ne pouvaient pas rester tels quels. Si tu n'avais pas repéré ces inserts, je t'en aurais parlé explicitement.) 😛 —2A01:CB00:8BE7:5800:4D4C:2542:B9D:138F (discuter) 13 février 2023 à 21:43 (CET)
- Une fois de plus, Wikipedia n'est pas conçu pour y exposer ses opinions personnelles sur tel ou tel auteur. Si tu as une source fiable qui partage ton point de vue sur Gardner, il est alors toujours possible de citer cette source pour juger de ce point de vue. Theon (discuter) 14 février 2023 à 16:18 (CET)
- Finalement, je me suis inscrit sur Open Library et j'ai « emprunté » (informatiquement) ce livre de Gardner : sa p. 226 ne précise pas comment on a appris que chacune des familles de sa 1ère « procédure » a au moins un garçon.
- Je n'ai pas de source pour appuyer la proposition suivante, mais on ne peut pas laisser une faiblesse de raisonnement sans la signaler. Alors ÀMHA, si on était tous d'accord, il faudrait ajouter une NDBP comme (par exemple) :
- Pour sa 1ère « procédure », Gardner définit les familles à deux enfants dont au moins un garçon de façon abstraite : on ne sait pas concrètement quelles sont ces familles ; on ne pourrait donc pas réellement choisir l'une d'elles (ni au hasard, ni la millième par ordre alphabétique, etc.).
- À Anne Bauval : Auriez-vous un avis sur cette question, SVP ? —2A01:CB00:8BE7:5800:B4BB:3DC3:79AE:60A1 (discuter) 15 février 2023 à 21:18 (CET)
- Je pense qu'il y a ici beaucoup de bruit pour rien. Si l'on change un peu quoi que ce soit, ce qui est figé dans l'énoncé ou ce que l'on comprend, il est banal de voir le résultat changer. On explique pourquoi, mais il n'y a pas de s'émouvoir outre mesure. --Dimorphoteca (discuter) 17 février 2023 à 10:37 (CET)
- Je lis dans la liste des modifications des propos peu aimables : "...jouer les flics tatillons (probablement parce qu'ils y prennent plaisir)". Espérons que ce sera le seul écart de langage ! --Dimorphoteca (discuter) 19 février 2023 à 09:46 (CET)
- Je pense qu'il y a ici beaucoup de bruit pour rien. Si l'on change un peu quoi que ce soit, ce qui est figé dans l'énoncé ou ce que l'on comprend, il est banal de voir le résultat changer. On explique pourquoi, mais il n'y a pas de s'émouvoir outre mesure. --Dimorphoteca (discuter) 17 février 2023 à 10:37 (CET)
- Une fois de plus, Wikipedia n'est pas conçu pour y exposer ses opinions personnelles sur tel ou tel auteur. Si tu as une source fiable qui partage ton point de vue sur Gardner, il est alors toujours possible de citer cette source pour juger de ce point de vue. Theon (discuter) 14 février 2023 à 16:18 (CET)