Jump to content

Halobacteriaceae

From Wikipedia, the free encyclopedia

Halobacteriaceae
Scientific classification Edit this classification
Domain: Archaea
Kingdom: Euryarchaeota
Class: Halobacteria
Order: Halobacteriales
Family: Halobacteriaceae
Gibbons 1974
Genera

See text

Synonyms
  • "Haloarchaeaceae" (sic) DasSarma & DasSarma 2008

Halobacteriaceae is a family in the order Halobacteriales and the domain Archaea.[1] Halobacteriaceae represent a large part of halophilic Archaea, along with members in two other methanogenic families, Methanosarcinaceae and Methanocalculaceae.[2] The family consists of many diverse genera that can survive extreme environmental niches.[3] Most commonly, Halobacteriaceae are found in hypersaline lakes and can even tolerate sites polluted by heavy metals.[4] They include neutrophiles, acidophiles (ex. Halarchaeum acidiphilum), alkaliphiles (ex. Natronobacterium), and there have even been psychrotolerant species discovered (ex. Hrr. lacusprofundi).[3] Some members have been known to live aerobically, as well as anaerobically, and they come in many different morphologies.[3] These diverse morphologies include rods in genus Halobacterium, cocci in Halococcus, flattened discs or cups in Haloferax, and other shapes ranging from flattened triangles in Haloarcula to squares in Haloquadratum, and Natronorubrum.[5][6] Most species of Halobacteriaceae are best known for their high salt tolerance and red-pink pigmented members (due to bacterioruberin carotenoids[5]), but there are also non-pigmented species and those that require moderate salt conditions.[3][7] Some species of Halobacteriaceae have been shown to exhibit phosphorus solubilizing activities that contribute to phosphorus cycling in hypersaline environments.[8] Techniques such as 16S rRNA analysis and DNA–DNA hybridization have been major contributors to taxonomic classification in Halobacteriaceae, partly due to the difficulty in culturing halophilic Archaea.[7][3][2]

Overview

[edit]

Halobacteriaceae are found in water saturated or nearly saturated with salt. They are also called halophiles, though this name is also used for other organisms which live in somewhat less concentrated salt water. They are common in most environments where large amounts of salt, moisture, and organic material are available. Large blooms appear reddish, from the pigment bacteriorhodopsin. This pigment is used to absorb light, which provides energy to create ATP. Halobacteria also possess a second pigment, halorhodopsin, which pumps in chloride ions in response to photons, creating a voltage gradient and assisting in the production of energy from light. The process is unrelated to other forms of photosynthesis involving electron transport and halobacteria are incapable of fixing carbon from carbon dioxide.

Halobacteria can exist in salty environments because although they are aerobes, they have a separate and different way of creating energy through use of light energy. Parts of the membranes of halobacteria are purplish in color and contain retinal pigment. This allows them to create a proton gradient across the membrane of the cell which can be used to create ATP for their own use.

They have certain adaptations to live within their salty environments. For example, their cellular machinery is adapted to high salt concentrations by having charged amino acids on their surfaces, allowing the cell to keep its water molecules around these components. The osmotic pressure and these amino acids help to control the amount of salt within the cell. However, because of these adaptations, if the cell is placed in a wet, less salty environment, it is likely to immediately burst from the osmotic pressure.

Phylogeny

[edit]

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[9] and National Center for Biotechnology Information (NCBI).[1]

16S rRNA based LTP_10_2024[10][11][12] 53 marker proteins based GTDB 09-RS220[13][14][15]

Halococcaceae

Haloarculaceae

Halocatena * Verma et al. 2020

Halomarina * Inoue et al. 2011

Natronomonas * Kamekura et al. 1997

Halosegnis Duran-Viseras et al. 2022
[incl. Halorarius Sun et al. 2023; Salella Deshmukh & Oren 2023]

Salinirubellus * Hou et al. 2018

Haloglomus Duran-Viseras, Sanchez-Porro & Ventosa 2020

Halorientalis Cui et al. 2011

Halapricum Song et al. 2014

Halococcoides Sorokin et al. 2019

Halorhabdus Waino et al. 2000

Salinirussus Cui et al. 2017

Salinibaculum * Han & Cui 2020

Halovenus * Makhdoumi-Kakhki et al. 2012

Halosimplex Vreeland et al. 2003

Halomicrobium Oren et al. 2002
[incl. Halosiccatus Mehrshad et al. 2016]

Halomicroarcula Echigo et al. 2013

Haloarcula Torreblanca et al. 1986

Note 1: * polyphyletic Halobacteriaceae
Note 2: Unassigned Halobacteriaceae

See also

[edit]

References

[edit]
  1. ^ a b Sayers; et al. "Halobacteriaceae". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2023-08-15.
  2. ^ a b Oren, Aharon (September 2014). "Taxonomy of halophilic Archaea: current status and future challenges". Extremophiles. 18 (5): 825–834. doi:10.1007/s00792-014-0654-9. PMID 25102811. S2CID 5395569.
  3. ^ a b c d e Oren, Aharon (February 1, 2012). "Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics". International Journal of Systematic and Evolutionary Microbiology. 62 (2): 263–271. doi:10.1099/ijs.0.038653-0. PMID 22155757.
  4. ^ Naik, Sanika; Furtado, Irene (2017). Marine Pollution and Microbial Remediation. Singapore: Springer Nature. pp. 143–152. ISBN 978-981-10-1044-6.
  5. ^ a b Oren, Aharon; Arahal, David; Ventosa, Antonio (2009). "Emended descriptions of genera of the family Halobacteriaceae". International Journal of Systematic and Evolutionary Microbiology. 59 (3): 637–642. doi:10.1099/ijs.0.008904-0. PMID 19244452.
  6. ^ Tully, Benjamin; Emerson, Joanne; Andrade, Karen; Brocks, Jochen; Allen, Eric; Banfield, Jillian; Heidelberg, Karla (September 16, 2014). "De novo sequences of Haloquadratum walsbyi from Lake Tyrrell, Australia, reveal a variable genomic landscape". Archaea. 2015: 875784. doi:10.1155/2015/875784. PMC 4330952. PMID 25709557.
  7. ^ a b Ventosa, A.; Marquez, M.; Sanchez-Porro, C.; Haba, R. (2012). Advances in understanding the biology of halophilic microorganisms ([Updated ed.]. ed.). Dordrecht: Springer, Dordrecht. doi:10.1007/978-94-007-5539-0_3. ISBN 978-94-007-5538-3.
  8. ^ Yadav, Ajar Nath; Sharma, Divya; Gulati, Sneha; Singh, Surender; Dey, Rinku; Pal, Kamal Krishna; Kaushik, Rajeev; Saxena, Anil Kumar (28 July 2015). "Haloarchaea Endowed with Phosphorus Solubilization Attribute Implicated in Phosphorus Cycle". Scientific Reports. 5 (1): 12293. Bibcode:2015NatSR...512293Y. doi:10.1038/srep12293. PMC 4516986. PMID 26216440.
  9. ^ J.P. Euzéby. "Halobacteriaceae". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2023-08-15.
  10. ^ "The LTP". Retrieved 10 December 2024.
  11. ^ "LTP_all tree in newick format". Retrieved 10 December 2024.
  12. ^ "LTP_10_2024 Release Notes" (PDF). Retrieved 10 December 2024.
  13. ^ "GTDB release 09-RS220". Genome Taxonomy Database. Retrieved 10 May 2024.
  14. ^ "ar53_r220.sp_label". Genome Taxonomy Database. Retrieved 10 May 2024.
  15. ^ "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2024.

Further reading

[edit]

Scientific journals

[edit]

Scientific books

[edit]
  • Grant WD, Larsen H (1989). "Group III. Extremely halophilic archaeobacteria. Order Halobacteriales ord. nov.". In JT Staley, MP Bryant, N Pfennig, JG Holt (eds.). Bergey's Manual of Systematic Bacteriology, Volume 3 (1st ed.). Baltimore: The Williams & Wilkins Co. p. 169.
  • Gibbons, NE (1974). "Family V. Halobacteriaceae fam. nov.". In RE Buchanan and NE Gibbons (ed.). Bergey's Manual of Determinative Bacteriology (8th ed.). Baltimore: The Williams & Wilkins Co.
  • Blum P, ed. (2008). Archaea: New Models for Prokaryotic Biology. Caister Academic Press. ISBN 978-1-904455-27-1. [1].
[edit]