Jump to content

List of organisms by chromosome count: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
mNo edit summary
Tags: Reverted Visual edit
(34 intermediate revisions by 25 users not shown)
Line 1: Line 1:
{{Short description|None}}
{{Short description|None}}
The '''list of organisms by chromosome count''' describes [[ploidy]] or numbers of [[chromosome]]s in the [[cell (biology)|cells]] of various [[plants]], [[animal]]s, [[protist]]s, and other living [[organism]]s. This number, along with the visual appearance of the chromosome, is known as the [[karyotype]],<ref>Concise Oxford Dictionary</ref><ref name="White2">{{cite book | vauthors = White MJ |title=The chromosomes |url=https://archive.org/details/chromosomes01whit |url-access=registration |publisher=Chapman & Hall |location=London |year=1973 |edition=6th |page=[https://archive.org/details/chromosomes01whit/page/n41 28]}}</ref><ref>{{cite book | vauthors = Stebbins GL |chapter=Chapter XII: The Karyotype |title=Variation and evolution in plants |publisher=Columbia University Press |year=1950 }}</ref> and can be found by looking at the the chromosomes through a [[microscope]]. Attention is paid to their length, the position of the [[centromere]]s, banding pattern, any differences bween the [[sex chromosome]]s, and any other fysical characteristics.<ref>{{cite book |vauthors = King RC, Stansfield WD, Mulligan PK |title=A dictionary of genetics |publisher=Oxford University Press |year=2006 |page=242 |edition=7th }}</ref> Te preparation and sudy of karyotypes is part of [[cytogenetics]].
The '''list of organisms by chromosome count''' describes [[ploidy]] or numbers of [[chromosome]]s in the [[cell (biology)|cells]] of various [[plants]], [[animal]]s, [[protist]]s, and other living [[organism]]s. This number, along with the visual appearance of the chromosome, is known as the [[karyotype]],<ref>Concise Oxford Dictionary</ref><ref name="White2">{{cite book | vauthors = White MJ |title=The chromosomes |url=https://archive.org/details/chromosomes01whit |url-access=registration |publisher=Chapman & Hall |location=London |year=1973 |edition=6th |page=[https://archive.org/details/chromosomes01whit/page/n41 28]}}</ref><ref>{{cite book | vauthors = Stebbins GL |chapter=Chapter XII: The Karyotype |title=Variation and evolution in plants |publisher=Columbia University Press |year=1950 }}</ref> and can be found by looking at the chromosomes through a [[microscope]]. Attention is paid to their length, the position of the [[centromere]]s, banding pattern, any differences between the [[sex chromosome]]s, and any other physical characteristics.<ref>{{cite book |vauthors = King RC, Stansfield WD, Mulligan PK |title=A dictionary of genetics |publisher=Oxford University Press |year=2006 |page=242 |edition=7th }}</ref> The preparation and study of karyotypes is part of [[cytogenetics]].

{{Legend|pink|[[Animal]]s}}
{{Legend|pink|[[Animal]]s}}
{{Legend|lightgreen|[[Plant]]s}}
{{Legend|lightgreen|[[Plant]]s}}
Line 8: Line 7:
{| class="wikitable sortable" style="text-align:left"
{| class="wikitable sortable" style="text-align:left"
|-
|-
!S. No.
! Organism<br />(''Scientific name'')
! Organism<br />(''B SULLAR'')
! class="numeric" | Chromosome number
! class="numeric" | Chromosome number
! class="unsortable" | Picture
! class="unsortable" | Picture
Line 15: Line 15:
! class="unsortable" | Source
! class="unsortable" | Source
|-
|-
!1
! style="background:pink;"|[[Jack jumper ant]]<br />(''Myrmecia pilosula'')
! style="background:pink;" |[[Jack jumper ant]]<br />(''Myrmecia pilosula'')
| {{sort|02|2/1}} || [[File:Myrmecia.pilosula.jpg|100px]] ||
| {{sort|02|2/1}} || [[File:Myrmecia.pilosula.jpg|100px]] ||
| 2 for females, males are haploid and thus have 1; smallest number possible. Other ant species have more chromosomes.<ref name=Crosland/>
| 2 for females, males are haploid and thus have 1; smallest number possible. Other ant species have more chromosomes.<ref name=Crosland/>
|<ref name="Crosland">{{cite journal | vauthors = Crosland MW, Crozier RH | title = Myrmecia pilosula, an Ant with Only One Pair of Chromosomes | journal = Science | volume = 231 | issue = 4743 | page = 1278 | date = March 1986 | pmid = 17839565 | doi = 10.1126/science.231.4743.1278 | s2cid = 25465053 | bibcode = 1986Sci...231.1278C }}</ref>
|<ref name="Crosland">{{cite journal | vauthors = Crosland MW, Crozier RH | title = Myrmecia pilosula, an Ant with Only One Pair of Chromosomes | journal = Science | volume = 231 | issue = 4743 | page = 1278 | date = March 1986 | pmid = 17839565 | doi = 10.1126/science.231.4743.1278 | s2cid = 25465053 | bibcode = 1986Sci...231.1278C }}</ref>
|-
|-
!2
! style="background:pink;"|[[Spider mite]]<br />(Tetranychidae)
! style="background:pink;" |[[Spider mite]]<br />(Tetranychidae)
| {{sort|04|4–14}}
| {{sort|04|4–14}}
| [[File:Tetranychus urticae with silk threads.jpg|100px]] ||
| [[File:Tetranychus urticae with silk threads.jpg|100px]] ||
| Spider mites (family [[Tetranychidae]]) are typically haplodiploid (males are haploid, while females are diploid)<ref name=Helle1972/>
| Spider mites (family [[Tetranychidae]]) are typically haplodiploid (males are haploid, while females are diploid)<ref name=Helle1972/>
| <ref name=Helle1972>{{cite journal| vauthors = Helle W, Bolland HR, Gutierrez J |title=Minimal chromosome number in false spider mites (Tenuipalpidae)|journal=Experientia|year=1972|volume=28|issue=6|doi=10.1007/BF01944992|page=707|s2cid=29547273}}</ref>
|<ref name=Helle1972>{{cite journal| vauthors = Helle W, Bolland HR, Gutierrez J |title=Minimal chromosome number in false spider mites (Tenuipalpidae)|journal=Experientia|year=1972|volume=28|issue=6|doi=10.1007/BF01944992|page=707|s2cid=29547273}}</ref>
|-
|-
!3
! style="background:pink;"|''[[Cricotopus sylvestris]]''
! style="background:pink;" |''[[Cricotopus sylvestris]]''
| {{sort|04|4}} || ||
| {{sort|04|4}} || [[File:Cricotopus sp. sylvestris group female Bytom.jpg|100px]]||
|
|
| <ref name="Michailova P, 1976">{{Cite journal| vauthors = Michailova P|year=1976|title=Cytotaxonomical Diagnostics of Species from the Genus Cricotopus (Chironomidae, Diptera)|journal=Caryologia|volume=29|issue=3|pages=291–306|doi=10.1080/00087114.1976.10796669|doi-access=free}}</ref>
|<ref name="Michailova P, 1976">{{Cite journal| vauthors = Michailova P|year=1976|title=Cytotaxonomical Diagnostics of Species from the Genus Cricotopus (Chironomidae, Diptera)|journal=Caryologia|volume=29|issue=3|pages=291–306|doi=10.1080/00087114.1976.10796669|doi-access=free}}</ref>
|-
|-
!4
! style="background:pink;"|''[[Oikopleura dioica]]''
! style="background:pink;" |''[[Oikopleura dioica]]''
| {{sort|06|6}} || [[File:Oikopleura dioica 2.jpg|100px]] ||
| {{sort|06|6}} || [[File:Oikopleura dioica 2.jpg|100px]] ||
|
|
| <ref name="Körner, 1952">{{Cite journal| vauthors = Körner WH |year=1952|title=Untersuchungen über die Gehäusebildung bei Appendicularien (Oikopleura dioica Fol)|journal=Zeitschrift für Morphologie und Ökologie der Tiere|volume=41|issue=1|pages=1–53|jstor=43261846|doi=10.1007/BF00407623|s2cid=19101198}}</ref>
|<ref name="Körner, 1952">{{Cite journal| vauthors = Körner WH |year=1952|title=Untersuchungen über die Gehäusebildung bei Appendicularien (Oikopleura dioica Fol)|journal=Zeitschrift für Morphologie und Ökologie der Tiere|volume=41|issue=1|pages=1–53|jstor=43261846|doi=10.1007/BF00407623|s2cid=19101198}}</ref>
|-
|-
!5
! style="background:pink;"|[[Aedes aegypti|Yellow fever mosquito]]<br />(''Aedes aegypti'')
! style="background:pink;" |[[Aedes aegypti|Yellow fever mosquito]]<br />(''Aedes aegypti'')
| {{sort|06|6}}
| {{sort|06|6}}
| [[File:Aedes aegypti.jpg|100px]] || [[File:Yellow Fever Mosquito (Aedes aegypti) chromosomes.png|150px]]
| [[File:Aedes aegypti.jpg|100px]] || [[File:Yellow Fever Mosquito (Aedes aegypti) chromosomes.png|150px]]
Line 42: Line 47:
|<ref name=AinG41>{{Cite book| vauthors = Giannelli F, Hall JC, Dunlap JC, Friedmann T |title=Advances in Genetics, Volume 41 (Advances in Genetics) |publisher=Academic Press |location=Boston |year=1999 |page=2 |isbn=978-0-12-017641-0 }}</ref>
|<ref name=AinG41>{{Cite book| vauthors = Giannelli F, Hall JC, Dunlap JC, Friedmann T |title=Advances in Genetics, Volume 41 (Advances in Genetics) |publisher=Academic Press |location=Boston |year=1999 |page=2 |isbn=978-0-12-017641-0 }}</ref>
|-
|-
!6
! style="background:pink;"|[[Indian muntjac]]<br />(''Muntiacus muntjak'')
! style="background:pink;" |[[Indian muntjac]]<br />(''Muntiacus muntjak'')
| {{sort|06|6/7}}
| {{sort|06|6/7}}
| [[File:Muntjac deer.JPG|100px]] || [[File:Karyotype of Indian muntjac (Muntiacus muntjak).png|150px]]
| [[File:Muntjac deer.JPG|100px]] || [[File:Karyotype of Indian muntjac (Muntiacus muntjak).png|150px]]
Line 48: Line 54:
|<ref>{{cite journal | vauthors = Wurster DH, Benirschke K | title = Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number | journal = Science | volume = 168 | issue = 3937 | pages = 1364–6 | date = June 1970 | pmid = 5444269 | doi = 10.1126/science.168.3937.1364 | bibcode = 1970Sci...168.1364W | name-list-style = amp | s2cid = 45371297 }}</ref>
|<ref>{{cite journal | vauthors = Wurster DH, Benirschke K | title = Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number | journal = Science | volume = 168 | issue = 3937 | pages = 1364–6 | date = June 1970 | pmid = 5444269 | doi = 10.1126/science.168.3937.1364 | bibcode = 1970Sci...168.1364W | name-list-style = amp | s2cid = 45371297 }}</ref>
|-
|-
!7
! style="background:lightgreen;"|[[Hieracium]]
! style="background:lightgreen;" |[[Hieracium]]
| {{sort|08|8}}
| {{sort|08|8}}
| [[File:Yellow Hawkweed.jpg|100px]] ||
| [[File:Yellow Hawkweed.jpg|100px]] ||
Line 54: Line 61:
|
|
|-
|-
!8
! style="background:pink;"|Fruit fly<br />(''[[Drosophila melanogaster]]'')
! style="background:pink;" |Fruit fly<br />(''[[Drosophila melanogaster]]'')
| {{sort|08|8}}
| {{sort|08|8}}
| [[File:Drosophila melanogaster - side (aka).jpg|100px]]|| [[File:Drosophila metaphase chromosomes female.png|150px]]
| [[File:Drosophila melanogaster - side (aka).jpg|100px]]|| [[File:Drosophila metaphase chromosomes female.png|150px]]
Line 67: Line 75:
</ref>
</ref>
|-
|-
!9
! style="background:pink;"|''[[Macrostomum lignano]]''
! style="background:pink;" |''[[Macrostomum lignano]]''
| {{sort|08|8}}
| {{sort|08|8}}
| [[File:Macrostomum lignano.jpg|100px]] || [[File:Karyotype of Macrostomum lignano.png|150px]]
| [[File:Macrostomum lignano.jpg|100px]] || [[File:Karyotype of Macrostomum lignano.png|150px]]
Line 73: Line 82:
|
|
|-
|-
!10
! style="background:lightgreen;"|[[Marchantia polymorpha]]
! style="background:lightgreen;" |[[Marchantia polymorpha]]
| {{sort|09|9}}
| {{sort|09|9}}
| [[File:Moos_5772.jpg|100px]] || [[File:Marchantia_polymorpha_male_karyotype.jpg|150px]]
| [[File:Moos_5772.jpg|100px]] || [[File:Marchantia_polymorpha_male_karyotype.jpg|150px]]
Line 93: Line 103:
</ref>
</ref>
|-
|-
!11
! style="background:lightgreen;"|[[Thale cress]]<br />(''Arabidopsis thaliana'')
! style="background:lightgreen;" |[[Thale cress]]<br />(''Arabidopsis thaliana'')
| 10
| 10
| [[File:Arabidopsis thaliana.jpg|100px]] || [[File:Karyotype of Thale cress (Arabidopsis thaliana).png|150px]]
| [[File:Arabidopsis thaliana.jpg|100px]] || [[File:Karyotype of Thale cress (Arabidopsis thaliana).png|150px]]
Line 99: Line 110:
|
|
|-
|-
!12
! style="background:pink;"|[[Swamp wallaby]]<br />(''Wallabia bicolor'')
! style="background:pink;" |[[Swamp wallaby]]<br />(''Wallabia bicolor'')
| {{sort|10|10/11}}
| {{sort|10|10/11}}
| [[File:Image-Swamp-Wallaby-Feeding-4,-Vic,-Jan.2008.jpg|100px]] || [[File:Karyotype of swamp wallaby (Wallabia bicolor).png|150px]]
| [[File:Image-Swamp-Wallaby-Feeding-4,-Vic,-Jan.2008.jpg|100px]] || [[File:Karyotype of swamp wallaby (Wallabia bicolor).png|150px]]
Line 106: Line 118:
{{cite journal | vauthors = Toder R, O'Neill RJ, Wienberg J, O'Brien PC, Voullaire L, Marshall-Graves JA | title = Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system | journal = Mammalian Genome | volume = 8 | issue = 6 | pages = 418–22 | date = June 1997 | pmid = 9166586 | doi = 10.1007/s003359900459 | s2cid = 12515691 }}</ref>
{{cite journal | vauthors = Toder R, O'Neill RJ, Wienberg J, O'Brien PC, Voullaire L, Marshall-Graves JA | title = Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system | journal = Mammalian Genome | volume = 8 | issue = 6 | pages = 418–22 | date = June 1997 | pmid = 9166586 | doi = 10.1007/s003359900459 | s2cid = 12515691 }}</ref>
|-
|-
!13
! style="background:lightgreen;"|Australian daisy<br />(''[[Brachyscome]] dichromosomatica'')
! style="background:lightgreen;" |Australian daisy<br />(''[[Brachyscome]] dichromosomatica'')
| {{sort|12|12}}
| {{sort|12|12}}
| [[File:Brachyscome iberidifolia1.jpg|100px]] ||
| [[File:Brachyscome iberidifolia1.jpg|100px]] ||
| This species can have more [[B chromosomes]] than A chromosomes at times, but 2n=4.
| This species can have more [[B chromosomes]] than A chromosomes at times, but 2n=4.
| <ref name="Leach et al 1995">{{cite journal | vauthors = Leach CR, Donald TM, Franks TK, Spiniello SS, Hanrahan CF, Timmis JN | title = Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica | journal = Chromosoma | volume = 103 | issue = 10 | pages = 708–14 | date = July 1995 | pmid = 7664618 | doi = 10.1007/BF00344232 | s2cid = 12246995 }}</ref>
|<ref name="Leach et al 1995">{{cite journal | vauthors = Leach CR, Donald TM, Franks TK, Spiniello SS, Hanrahan CF, Timmis JN | title = Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica | journal = Chromosoma | volume = 103 | issue = 10 | pages = 708–14 | date = July 1995 | pmid = 7664618 | doi = 10.1007/BF00344232 | s2cid = 12246995 }}</ref>
|-
|-
!14
! style="background:pink;"|[[Nematode]]<br />(''[[Caenorhabditis elegans]]'')
! style="background:pink;" |[[Nematode]]<br />(''[[Caenorhabditis elegans]]'')
| {{sort|11|12/11}}
| {{sort|11|12/11}}
| [[File:Adult Caenorhabditis elegans.jpg|100px]] || [[File:Karyotype of Caenorhabditis elegans.png|150px]]
| [[File:Adult Caenorhabditis elegans.jpg|100px]] || [[File:Karyotype of Caenorhabditis elegans.png|150px]]
Line 118: Line 132:
|
|
|-
|-
!15
! style="background:lightgreen;"|[[Spinach]]<br />(''Spinacia oleracea'')
! style="background:lightgreen;" |[[Spinach]]<br />(''Spinacia oleracea'')
| 12
| 12
| [[File:Wurzelspinat02.jpg|100px]] || [[File:Karyotype of Spinach (Spinacia oleracea L. Mazeran).png|150px]]
| [[File:Wurzelspinat02.jpg|100px]] || [[File:Karyotype of Spinach (Spinacia oleracea L. Mazeran).png|150px]]
Line 124: Line 139:
|<ref name="pmid26048564">{{cite journal | vauthors = Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, Onodera Y | title = Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species | journal = G3 | volume = 5 | issue = 8 | pages = 1663–73 | date = June 2015 | pmid = 26048564 | pmc = 4528323 | doi = 10.1534/g3.115.018671 }}</ref>
|<ref name="pmid26048564">{{cite journal | vauthors = Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, Onodera Y | title = Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species | journal = G3 | volume = 5 | issue = 8 | pages = 1663–73 | date = June 2015 | pmid = 26048564 | pmc = 4528323 | doi = 10.1534/g3.115.018671 }}</ref>
|-
|-
!16
! style="background:lightgreen;"|[[Broad bean]]<br />(''Vicia faba'')
! style="background:lightgreen;" |[[Broad bean]]<br />(''Vicia faba'')
| 12
| 12
| [[File:Fava beans 1.jpg|100px]] || [[File:Karyotype of Broad bean (Vicia faba).png|150px]]
| [[File:Fava beans 1.jpg|100px]] || [[File:Karyotype of Broad bean (Vicia faba).png|150px]]
Line 130: Line 146:
|<ref name="pmid22754463">{{cite journal | vauthors = Patlolla AK, Berry A, May L, Tchounwou PB | title = Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles | journal = International Journal of Environmental Research and Public Health | volume = 9 | issue = 5 | pages = 1649–62 | date = May 2012 | pmid = 22754463 | pmc = 3386578 | doi = 10.3390/ijerph9051649 | doi-access = free }}</ref>
|<ref name="pmid22754463">{{cite journal | vauthors = Patlolla AK, Berry A, May L, Tchounwou PB | title = Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles | journal = International Journal of Environmental Research and Public Health | volume = 9 | issue = 5 | pages = 1649–62 | date = May 2012 | pmid = 22754463 | pmc = 3386578 | doi = 10.3390/ijerph9051649 | doi-access = free }}</ref>
|-
|-
!17
! style="background:pink;"|[[Yellow dung fly]]<br />(''Scathophaga stercoraria'')
! style="background:pink;" |[[Yellow dung fly]]<br />(''Scathophaga stercoraria'')
| 12
| 12
| [[File:Fliege9012.JPG|100px]] || [[File:Karyotype of female yellow dung fly (Scathophaga stercoraria).png|150px]]
| [[File:Fliege9012.JPG|100px]] || [[File:Karyotype of female yellow dung fly (Scathophaga stercoraria).png|150px]]
Line 136: Line 153:
|<ref name="pmid20874599">{{cite journal | vauthors = Sbilordo SH, Martin OY, Ward PI | title = The karyotype of the yellow dung fly, Scathophaga stercoraria, a model organism in studies of sexual selection | journal = Journal of Insect Science | volume = 10 | issue = 118 | pages = 1–11 | year = 2010 | pmid = 20874599 | pmc = 3016996 | doi = 10.1673/031.010.11801 }}</ref>
|<ref name="pmid20874599">{{cite journal | vauthors = Sbilordo SH, Martin OY, Ward PI | title = The karyotype of the yellow dung fly, Scathophaga stercoraria, a model organism in studies of sexual selection | journal = Journal of Insect Science | volume = 10 | issue = 118 | pages = 1–11 | year = 2010 | pmid = 20874599 | pmc = 3016996 | doi = 10.1673/031.010.11801 }}</ref>
|-
|-
!18
! style="background:lightblue;"|[[Slime mold]]<br />(''[[Dictyostelium discoideum]]'')
! style="background:lightblue;" |[[Slime mold]]<br />(''[[Dictyostelium discoideum]]'')
| 12
| 12
| [[File:Dictyostelium Fruiting Bodies.JPG|100px]] ||
| [[File:Dictyostelium Fruiting Bodies.JPG|100px]] ||
Line 149: Line 167:
</ref>
</ref>
|-
|-
!19
! style="background:lightgreen;"|[[Cucumber]]<br />(''Cucumis sativus'')
! style="background:lightgreen;" |[[Cucumber]]<br />(''Cucumis sativus'')
| 14
| 14
| [[File:Komkommer plant.jpg|100px]] || [[File:Karyotype of cucumber (Cucumis sativus).png|150px]]
| [[File:Komkommer plant.jpg|100px]] || [[File:Karyotype of cucumber (Cucumis sativus).png|150px]]
|
|
|<ref name="pmid26407707">{{cite journal | vauthors = Zhang Y, Cheng C, Li J, Yang S, Wang Y, Li Z, Chen J, Lou Q | display-authors = 6 | title = Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping | journal = BMC Genomics | volume = 16 | issue = 1 | page = 730 | date = September 2015 | pmid = 26407707 | pmc = 4583154 | doi = 10.1186/s12864-015-1877-6 }}</ref>
|<ref name="pmid26407707">{{cite journal | vauthors = Zhang Y, Cheng C, Li J, Yang S, Wang Y, Li Z, Chen J, Lou Q | display-authors = 6 | title = Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping | journal = BMC Genomics | volume = 16 | issue = 1 | page = 730 | date = September 2015 | pmid = 26407707 | pmc = 4583154 | doi = 10.1186/s12864-015-1877-6 | doi-access = free }}</ref>
|-
|-
!20
! style="background:pink;"|[[Tasmanian devil]]<br />(''Sarcophilus harrisii'')
! style="background:pink;" |[[Tasmanian devil]]<br />(''Sarcophilus harrisii'')
| 14
| 14
| [[File:Sarcophilus harrisii taranna.jpg|100px]] || [[File:Karyotype of Tasmanian devil (Sarcophilus Harrisii).png|150px]]
| [[File:Sarcophilus harrisii taranna.jpg|100px]] || [[File:Karyotype of Tasmanian devil (Sarcophilus Harrisii).png|150px]]
Line 161: Line 181:
|
|
|-
|-
!21
! style="background:lightgreen;"|[[Rye]]<br />(''Secale cereale'')
! style="background:lightgreen;" |[[Rye]]<br />(''Secale cereale'')
| 14
| 14
| [[File:Rye Mature Grain Summer.jpg|100px]] || [[File:Karyotype of Austrian rye (Secale cereale).png|150px]]
| [[File:Rye Mature Grain Summer.jpg|100px]] || [[File:Karyotype of Austrian rye (Secale cereale).png|150px]]
Line 167: Line 188:
|<ref name="Simmonds"/>
|<ref name="Simmonds"/>
|-
|-
!22
! style="background:lightgreen;"|[[Pea]]<br />(''Pisum sativum'')
! style="background:lightgreen;" |[[Pea]]<br />(''Pisum sativum'')
| 14
| 14
| [[File:Peas in pods - Studio.jpg|100px]] || [[File:Karyotype of pea (Pisum sativum).png|150px]]
| [[File:Peas in pods - Studio.jpg|100px]] || [[File:Karyotype of pea (Pisum sativum).png|150px]]
Line 173: Line 195:
|<ref name="Simmonds"/>
|<ref name="Simmonds"/>
|-
|-
!23
! style="background:lightgreen;"|[[Barley]]<br />(''Hordeum vulgare'')
! style="background:lightgreen;" |[[Barley]]<br />(''Hordeum vulgare'')
| 14
| 14
| [[File:Hordeum-barley.jpg|100px]] || [[File:Karyotype of barley (Hordeum vulgare).png|150px]]
| [[File:Hordeum-barley.jpg|100px]] || [[File:Karyotype of barley (Hordeum vulgare).png|150px]]
Line 179: Line 202:
|<ref name="pmid26913037">{{cite journal | vauthors = Schubert V, Ruban A, Houben A | title = Chromatin Ring Formation at Plant Centromeres | journal = Frontiers in Plant Science | volume = 7 | page = 28 | year = 2016 | pmid = 26913037 | pmc = 4753331 | doi = 10.3389/fpls.2016.00028 | doi-access = free }}</ref>
|<ref name="pmid26913037">{{cite journal | vauthors = Schubert V, Ruban A, Houben A | title = Chromatin Ring Formation at Plant Centromeres | journal = Frontiers in Plant Science | volume = 7 | page = 28 | year = 2016 | pmid = 26913037 | pmc = 4753331 | doi = 10.3389/fpls.2016.00028 | doi-access = free }}</ref>
|-
|-
!24
! style="background:lightgreen;"|''[[Aloe vera]]''
! style="background:lightgreen;" |''[[Aloe vera]]''
| 14
| 14
| [[File:Aloe vera 1.jpg|100px]] || [[File:Karyotype of Aloe vera.png|150px]]
| [[File:Aloe vera 1.jpg|100px]] || [[File:Karyotype of Aloe vera.png|150px]]
| The diploid chromosome number is 2n = 14 with four pair of long [[acrocentric]] chromosomes ranging from 14.4 μm to 17.9 μm and three pair of short [[sub metacentric]] chromosomes ranging from 4.6 μm to 5.4 μm.<ref name="pmid28510900"/>
| The diploid chromosome number is 2n = 14 with four pair of long [[acrocentric]] chromosomes ranging from 14.4 μm to 17.9 μm and three pair of short [[sub metacentric]] chromosomes ranging from 4.6 μm to 5.4 μm.<ref name="pmid28510900"/>
|<ref name="pmid28510900">{{cite journal | vauthors = Haque SM, Ghosh B | title = High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two years old field growing regenerated plants | journal = Botanical Studies | volume = 54 | issue = 1 | page = 46 | date = December 2013 | pmid = 28510900 | pmc = 5430365 | doi = 10.1186/1999-3110-54-46 }}</ref>
|<ref name="pmid28510900">{{cite journal | vauthors = Haque SM, Ghosh B | title = High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two years old field growing regenerated plants | journal = Botanical Studies | volume = 54 | issue = 1 | page = 46 | date = December 2013 | pmid = 28510900 | pmc = 5430365 | doi = 10.1186/1999-3110-54-46 | doi-access = free | bibcode = 2013BotSt..54...46H }}</ref>
|-
|-
!25
! style="background:pink;"|[[Koala]]<br />(''Phascolarctos cinereus'')
! style="background:pink;" |[[Koala]]<br />(''Phascolarctos cinereus'')
| 16
| 16
| [[File:Koala climbing tree.jpg|100px]] ||
| [[File:Koala climbing tree.jpg|100px]] ||
Line 191: Line 216:
|
|
|-
|-
!26
! style="background:pink;"|[[Kangaroo]]
! style="background:pink;" |[[Kangaroo]]
| 16
| 16
| [[File:Macropus robustus2.jpg|100px]] || [[File:Karyotype of wallaroo (Macropus robustus).png|150px]]
| [[File:Macropus robustus2.jpg|100px]] || [[File:Karyotype of wallaroo (Macropus robustus).png|150px]]
Line 197: Line 223:
|<ref>{{cite journal | vauthors = Rofe RH |date=December 1978 |title= G-banded chromosomes and the evolution of macropodidae |journal= Australian Mammalogy |volume= 2 |pages= 50–63 |doi=10.1071/AM78007 |s2cid=254728517 |issn= 0310-0049 |url= https://books.google.com/books?id=N_ifwszrgFsC&pg=PA53}}</ref>
|<ref>{{cite journal | vauthors = Rofe RH |date=December 1978 |title= G-banded chromosomes and the evolution of macropodidae |journal= Australian Mammalogy |volume= 2 |pages= 50–63 |doi=10.1071/AM78007 |s2cid=254728517 |issn= 0310-0049 |url= https://books.google.com/books?id=N_ifwszrgFsC&pg=PA53}}</ref>
|-
|-
!27
! style="background:pink;"|''[[Botryllus schlosseri]]''
! style="background:pink;" |''[[Botryllus schlosseri]]''
| {{sort|16|16}} || [[File:Botryllus schlosseri.jpg|100px]] ||
| {{sort|16|16}} || [[File:Botryllus schlosseri.jpg|100px]] ||
|
|
| <ref name="Colombera, 1974">{{Cite journal| vauthors = Colombera D|year=1974|title=Chromosome number within the class Ascidiacea|journal=Marine Biology|volume=26|issue=1|pages=63–68|doi=10.1007/BF00389087|s2cid=84189212}}</ref>
|<ref name="Colombera, 1974">{{Cite journal| vauthors = Colombera D|year=1974|title=Chromosome number within the class Ascidiacea|journal=Marine Biology|volume=26|issue=1|pages=63–68|doi=10.1007/BF00389087|bibcode=1974MarBi..26...63C |s2cid=84189212}}</ref>
|-
|-
!28
! style="background:pink;"|''[[Schistosoma mansoni]]''
! style="background:pink;" |''[[Schistosoma mansoni]]''
| 16
| 16
| [[File:Schistosoma mansoni trematodes.jpg|100px]] || [[File:Karyotype of Schistosoma mansoni.png|150px]]
| [[File:Schistosoma mansoni trematodes.jpg|100px]] || [[File:Karyotype of Schistosoma mansoni.png|150px]]
Line 208: Line 236:
|<ref name="pmid19606141">{{cite journal | vauthors = Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, Mashiyama ST, Al-Lazikani B, Andrade LF, Ashton PD, Aslett MA, Bartholomeu DC, Blandin G, Caffrey CR, Coghlan A, Coulson R, Day TA, Delcher A, DeMarco R, Djikeng A, Eyre T, Gamble JA, Ghedin E, Gu Y, Hertz-Fowler C, Hirai H, Hirai Y, Houston R, Ivens A, Johnston DA, Lacerda D, Macedo CD, McVeigh P, Ning Z, Oliveira G, Overington JP, Parkhill J, Pertea M, Pierce RJ, Protasio AV, Quail MA, Rajandream MA, Rogers J, Sajid M, Salzberg SL, Stanke M, Tivey AR, White O, Williams DL, Wortman J, Wu W, Zamanian M, Zerlotini A, Fraser-Liggett CM, Barrell BG, El-Sayed NM | display-authors = 6 | title = The genome of the blood fluke Schistosoma mansoni | journal = Nature | volume = 460 | issue = 7253 | pages = 352–8 | date = July 2009 | pmid = 19606141 | pmc = 2756445 | doi = 10.1038/nature08160 | bibcode = 2009Natur.460..352B }}</ref>
|<ref name="pmid19606141">{{cite journal | vauthors = Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, Mashiyama ST, Al-Lazikani B, Andrade LF, Ashton PD, Aslett MA, Bartholomeu DC, Blandin G, Caffrey CR, Coghlan A, Coulson R, Day TA, Delcher A, DeMarco R, Djikeng A, Eyre T, Gamble JA, Ghedin E, Gu Y, Hertz-Fowler C, Hirai H, Hirai Y, Houston R, Ivens A, Johnston DA, Lacerda D, Macedo CD, McVeigh P, Ning Z, Oliveira G, Overington JP, Parkhill J, Pertea M, Pierce RJ, Protasio AV, Quail MA, Rajandream MA, Rogers J, Sajid M, Salzberg SL, Stanke M, Tivey AR, White O, Williams DL, Wortman J, Wu W, Zamanian M, Zerlotini A, Fraser-Liggett CM, Barrell BG, El-Sayed NM | display-authors = 6 | title = The genome of the blood fluke Schistosoma mansoni | journal = Nature | volume = 460 | issue = 7253 | pages = 352–8 | date = July 2009 | pmid = 19606141 | pmc = 2756445 | doi = 10.1038/nature08160 | bibcode = 2009Natur.460..352B }}</ref>
|-
|-
!29
! style="background:lightgreen;"|[[Welsh onion]]<br />(''Allium fistulosum'')
! style="background:lightgreen;" |[[Welsh onion]]<br />(''Allium fistulosum'')
| 16
| 16
| [[File:Spring Onion.jpg|100px]] || [[File:DAPI stained Welsh onion (Allium fistulosum) chromosomes.png|150px]]
| [[File:Spring Onion.jpg|100px]] || [[File:DAPI stained Welsh onion (Allium fistulosum) chromosomes.png|150px]]
Line 214: Line 243:
|<ref name="pmid23236469">{{cite journal | vauthors = Nagaki K, Yamamoto M, Yamaji N, Mukai Y, Murata M | title = Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium | journal = PLOS ONE | volume = 7 | issue = 12 | pages = e51315 | year = 2012 | pmid = 23236469 | pmc = 3517398 | doi = 10.1371/journal.pone.0051315 | bibcode = 2012PLoSO...751315N | doi-access = free }}</ref>
|<ref name="pmid23236469">{{cite journal | vauthors = Nagaki K, Yamamoto M, Yamaji N, Mukai Y, Murata M | title = Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium | journal = PLOS ONE | volume = 7 | issue = 12 | pages = e51315 | year = 2012 | pmid = 23236469 | pmc = 3517398 | doi = 10.1371/journal.pone.0051315 | bibcode = 2012PLoSO...751315N | doi-access = free }}</ref>
|-
|-
!30
! style="background:lightgreen;"|[[Garlic]]<br />(''Allium sativum'')
! style="background:lightgreen;" |[[Garlic]]<br />(''Allium sativum'')
| 16
| 16
| [[File:All Garlic Ail Ajo.jpg|100px]] || [[File:Karyotype of garlic (Allium sativum).png|150px]]
| [[File:All Garlic Ail Ajo.jpg|100px]] || [[File:Karyotype of garlic (Allium sativum).png|150px]]
Line 220: Line 250:
|<ref name="pmid23236469"/>
|<ref name="pmid23236469"/>
|-
|-
!31
! style="background:pink;"|[[Itch mite]]<br />(''Sarcoptes scabiei'')
! style="background:pink;" |[[Itch mite]]<br />(''Sarcoptes scabiei'')
| {{sort|17|17/18}}
| {{sort|17|17/18}}
| [[File:Sarcoptes scabei 2.jpg|100px]] || [[File:Chromosomal spreads of single itch mite (Sarcoptes scabiei) cell - 17 chromosomes.png|150px]]
| [[File:Sarcoptes scabei 2.jpg|100px]] || [[File:Chromosomal spreads of single itch mite (Sarcoptes scabiei) cell - 17 chromosomes.png|150px]]
| According to the observation of embryonic cells of egg, chromosome number of the itch mite is either 17 or 18. While the cause for the disparate numbers is unknown, it may arise because of an [[X0 sex-determination system|XO sex determination mechanism]], where males (2n=17) lack the sex chromosome and therefore have one less chromosome than the female (2n=18).<ref name="pmid22214472"/>
| According to the observation of embryonic cells of egg, chromosome number of the itch mite is either 17 or 18. While the cause for the disparate numbers is unknown, it may arise because of an [[X0 sex-determination system|XO sex determination mechanism]], where males (2n=17) lack the sex chromosome and therefore have one less chromosome than the female (2n=18).<ref name="pmid22214472"/>
|<ref name="pmid22214472">{{cite journal | vauthors = Mounsey KE, Willis C, Burgess ST, Holt DC, McCarthy J, Fischer K | title = Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus | journal = Parasites & Vectors | volume = 5 | page = 3 | date = January 2012 | pmid = 22214472 | pmc = 3274472 | doi = 10.1186/1756-3305-5-3 }}</ref>
|<ref name="pmid22214472">{{cite journal | vauthors = Mounsey KE, Willis C, Burgess ST, Holt DC, McCarthy J, Fischer K | title = Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus | journal = Parasites & Vectors | volume = 5 | page = 3 | date = January 2012 | pmid = 22214472 | pmc = 3274472 | doi = 10.1186/1756-3305-5-3 | doi-access = free }}</ref>
|-
|-
!32
! style="background:lightgreen;"|[[Radish]]<br />(''Raphanus sativus'')
! style="background:lightgreen;" |[[Radish]]<br />(''Raphanus sativus'')
| 18
| 18
| [[File:Raphanus sativus subsp. sativus, radijs (1).jpg|100px]] || [[File:Karyotype of radish (Raphanus sativus).png|150px]]
| [[File:Raphanus sativus subsp. sativus, radijs (1).jpg|100px]] || [[File:Karyotype of radish (Raphanus sativus).png|150px]]
|
|
| <ref name="Simmonds"/>
|<ref name="Simmonds"/>
|-
|-
!33
! style="background:lightgreen;"|[[Carrot]]<br />(''[[Daucus carota]]'')
! style="background:lightgreen;" |[[Carrot]]<br />(''[[Daucus carota]]'')
| 18
| 18
| [[File:Baby carrots - jules.jpg|100px]] || [[File:Karyotype of carrot (Daucus carota).png|150px]]
| [[File:Baby carrots - jules.jpg|100px]] || [[File:Karyotype of carrot (Daucus carota).png|150px]]
Line 238: Line 271:
|<ref name="pmid24887084">{{cite journal | vauthors = Dunemann F, Schrader O, Budahn H, Houben A | title = Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.) | journal = PLOS ONE | volume = 9 | issue = 6 | pages = e98504 | year = 2014 | pmid = 24887084 | pmc = 4041860 | doi = 10.1371/journal.pone.0098504 | bibcode = 2014PLoSO...998504D | doi-access = free }}</ref>
|<ref name="pmid24887084">{{cite journal | vauthors = Dunemann F, Schrader O, Budahn H, Houben A | title = Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.) | journal = PLOS ONE | volume = 9 | issue = 6 | pages = e98504 | year = 2014 | pmid = 24887084 | pmc = 4041860 | doi = 10.1371/journal.pone.0098504 | bibcode = 2014PLoSO...998504D | doi-access = free }}</ref>
|-
|-
!34
! style="background:lightgreen;"|[[Cabbage]]<br />(''Brassica oleracea'')
! style="background:lightgreen;" |[[Cabbage]]<br />(''Brassica oleracea'')
| 18
| 18
| [[File:Choux 02.jpg|100px]] || [[File:Karyotype of Brussels sprout (Brassica oleracea var. gemmifera).png|150px]]
| [[File:Choux 02.jpg|100px]] || [[File:Karyotype of Brussels sprout (Brassica oleracea var. gemmifera).png|150px]]
Line 244: Line 278:
|<ref name="Simmonds"/>
|<ref name="Simmonds"/>
|-
|-
!35
! style="background:lightgreen;"|[[Citrus]]<br />(''Citrus'')
! style="background:lightgreen;" |[[Citrus]]<br />(''Citrus'')
| 18
| 18
| [[File:Lemon, Lime and Orange.jpg|100px]] || [[File:Karyotype of Lemon (Citrus limon).png|150px]]
| [[File:Lemon, Lime and Orange.jpg|100px]] || [[File:Karyotype of Lemon (Citrus limon).png|150px]]
| Chromosome number of the genus ''[[Citrus]]'', which including [[lemon]]s, [[orange (fruit)|oranges]], [[grapefruit]], [[pomelo]] and [[lime (fruit)|limes]], is 2n = 18.<ref name="citrus1997">{{cite journal| vauthors = Guerra M, Pedrosa A, Cornélio MT, Santos K, Soares Filho WD | title=Chromosome number and secondary constriction variation in 51 accessions of a citrus germplasm bank | journal=Brazilian Journal of Genetics | year= 1997 | volume= 20 | issue= 3 | pages= 489–496| doi=10.1590/S0100-84551997000300021 | doi-access=free}}</ref>
| Chromosome number of the genus ''[[Citrus]]'', which including [[lemon]]s, [[orange (fruit)|oranges]], [[grapefruit]], [[pomelo]] and [[lime (fruit)|limes]], is 2n = 18.<ref name="citrus1997">{{cite journal| vauthors = Guerra M, Pedrosa A, Cornélio MT, Santos K, Soares Filho WD | title=Chromosome number and secondary constriction variation in 51 accessions of a citrus germplasm bank | journal=Brazilian Journal of Genetics | year= 1997 | volume= 20 | issue= 3 | pages= 489–496| doi=10.1590/S0100-84551997000300021 | doi-access=free}}</ref>
|<ref name="pmid24260635">{{cite journal | vauthors = Hynniewta M, Malik SK, Rao SR | title = Karyological studies in ten species of Citrus(Linnaeus, 1753) (Rutaceae) of North-East India | journal = Comparative Cytogenetics | volume = 5 | issue = 4 | pages = 277–87 | year = 2011 | pmid = 24260635 | pmc = 3833788 | doi = 10.3897/CompCytogen.v5i4.1796 }}</ref>
|<ref name="pmid24260635">{{cite journal | vauthors = Hynniewta M, Malik SK, Rao SR | title = Karyological studies in ten species of Citrus(Linnaeus, 1753) (Rutaceae) of North-East India | journal = Comparative Cytogenetics | volume = 5 | issue = 4 | pages = 277–87 | year = 2011 | pmid = 24260635 | pmc = 3833788 | doi = 10.3897/CompCytogen.v5i4.1796 | doi-access = free }}</ref>
|-
|-
!36
! style="background:lightgreen;"|[[Passiflora edulis|Passion fruit]]<br />(''Passiflora edulis'')
! style="background:lightgreen;" |[[Passiflora edulis|Passion fruit]]<br />(''Passiflora edulis'')
| 18
| 18
| [[File:Passionfruit and cross section.jpg|100px]] || [[File:Karyotype of passion fruit (Passiflora edulis).png|150px]]
| [[File:Passionfruit and cross section.jpg|100px]] || [[File:Karyotype of passion fruit (Passiflora edulis).png|150px]]
Line 256: Line 292:
|<ref name="Passionfruit2008">Souza, Margarete Magalhães, Telma N. Santana Pereira, and Maria Lúcia Carneiro Vieira. "Cytogenetic studies in some species of Passiflora L.(Passifloraceae): a review emphasizing Brazilian species." Brazilian Archives of Biology and Technology 51.2 (2008): 247–258. https://dx.doi.org/10.1590/S1516-89132008000200003</ref>
|<ref name="Passionfruit2008">Souza, Margarete Magalhães, Telma N. Santana Pereira, and Maria Lúcia Carneiro Vieira. "Cytogenetic studies in some species of Passiflora L.(Passifloraceae): a review emphasizing Brazilian species." Brazilian Archives of Biology and Technology 51.2 (2008): 247–258. https://dx.doi.org/10.1590/S1516-89132008000200003</ref>
|-
|-
!37
! style="background:lightgreen;"|[[Setaria viridis]]<br />(''Setaria viridis'')
! style="background:lightgreen;" |[[Setaria viridis]]<br />(''Setaria viridis'')
| 18
| 18
| [[File:エノコログサSetaria viridis (L.) P.Beauv.P9130041.JPG|100px]] || [[File:Karyotype of Setaria viridis.png|150px]]
| [[File:エノコログサSetaria viridis (L.) P.Beauv.P9130041.JPG|100px]] || [[File:Karyotype of Setaria viridis.png|150px]]
|
|
|<ref name="pmid26753080">{{cite journal | vauthors = Nani TF, Cenzi G, Pereira DL, Davide LC, Techio VH | title = Ribosomal DNA in diploid and polyploid Setaria (Poaceae) species: number and distribution | journal = Comparative Cytogenetics | volume = 9 | issue = 4 | pages = 645–60 | year = 2015 | pmid = 26753080 | pmc = 4698577 | doi = 10.3897/CompCytogen.v9i4.5456 }}</ref>
|<ref name="pmid26753080">{{cite journal | vauthors = Nani TF, Cenzi G, Pereira DL, Davide LC, Techio VH | title = Ribosomal DNA in diploid and polyploid Setaria (Poaceae) species: number and distribution | journal = Comparative Cytogenetics | volume = 9 | issue = 4 | pages = 645–60 | year = 2015 | pmid = 26753080 | pmc = 4698577 | doi = 10.3897/CompCytogen.v9i4.5456 | doi-access = free }}</ref>
|-
|-
!38
! style="background:lightgreen;"|[[Maize]]<br />(''Zea mays'')
! style="background:lightgreen;" |[[Maize]]<br />(''Zea mays'')
| 20
| 20
| [[File:Klip kukuruza uzgojen u Međimurju (Croatia).JPG|100px]] || [[File:C-banded karyograms of Maize.png|150px]]
| [[File:Klip kukuruza uzgojen u Međimurju (Croatia).JPG|100px]] || [[File:C-banded karyograms of Maize.png|150px]]
Line 268: Line 306:
|<ref name="Simmonds"/>
|<ref name="Simmonds"/>
|-
|-
!39
! style="background:lightgreen;"|[[Cannabis]]<br />(''[[Cannabis sativa]]'')
! style="background:lightgreen;" |[[Cannabis]]<br />(''[[Cannabis sativa]]'')
| 20
| 20
| [[File:Cannabis sativa leaf.jpg|100px]] || [[File:Karyotype of Hemp (Cannabis sativa).png|150px]]
| [[File:Cannabis sativa leaf.jpg|100px]] || [[File:Karyotype of Hemp (Cannabis sativa).png|150px]]
Line 274: Line 313:
|
|
|-
|-
!40
! style="background:pink;"|[[Western clawed frog]]<br />(''Xenopus tropicalis'')
! style="background:pink;" |[[Western clawed frog]]<br />(''Xenopus tropicalis'')
| 20
| 20
| [[File:Xenopus tropicalis02.jpeg|100px]] || [[File:Karyotype of Western clawed frog (Xenopus (Silurana) tropicalis).png|150px]]
| [[File:Xenopus tropicalis02.jpeg|100px]] || [[File:Karyotype of Western clawed frog (Xenopus (Silurana) tropicalis).png|150px]]
Line 280: Line 320:
|<ref name="ReferenceA">{{cite journal | vauthors = Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, Schmid M, Taira M | display-authors = 6 | title = A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis | journal = Cytogenetic and Genome Research | volume = 145 | issue = 3–4 | pages = 187–91 | date = April 2015 | pmid = 25871511 | doi = 10.1159/000381292 | s2cid = 207626597 | url = https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/19674 }}</ref>
|<ref name="ReferenceA">{{cite journal | vauthors = Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, Schmid M, Taira M | display-authors = 6 | title = A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis | journal = Cytogenetic and Genome Research | volume = 145 | issue = 3–4 | pages = 187–91 | date = April 2015 | pmid = 25871511 | doi = 10.1159/000381292 | s2cid = 207626597 | url = https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/19674 }}</ref>
|-
|-
!41
! style="background:lightgreen;"|[[Australian pitcher plant]]<br />(''Cephalotus follicularis'')
! style="background:lightgreen;" |[[Australian pitcher plant]]<br />(''Cephalotus follicularis'')
| 20
| 20
| [[File:Cephalotus follicularis 002.jpg|100px]] ||
| [[File:Cephalotus follicularis 002.jpg|100px]] ||
Line 286: Line 327:
|<ref name="carnivorous plants">{{cite journal| vauthors = Kondo K |title=Chromosome Numbers of Carnivorous Plants|journal=Bulletin of the Torrey Botanical Club|date=May 1969|volume=96|issue=3|pages=322–328|doi=10.2307/2483737|jstor=2483737}}</ref>
|<ref name="carnivorous plants">{{cite journal| vauthors = Kondo K |title=Chromosome Numbers of Carnivorous Plants|journal=Bulletin of the Torrey Botanical Club|date=May 1969|volume=96|issue=3|pages=322–328|doi=10.2307/2483737|jstor=2483737}}</ref>
|-
|-
!42
! style="background:lightgreen;"|[[Theobroma cacao|Cacao]]<br />(''Theobroma cacao'')
! style="background:lightgreen;" |[[Theobroma cacao|Cacao]]<br />(''Theobroma cacao'')
| 20
| 20
| [[File:Matadecacao.jpg|100px]] || [[File:Karyotype of cacao.png|150px]]
| [[File:Matadecacao.jpg|100px]] || [[File:Karyotype of cacao.png|150px]]
Line 292: Line 334:
|<ref name="pmid28187131">{{cite journal | vauthors = da Silva RA, Souza G, Lemos LS, Lopes UV, Patrocínio NG, Alves RM, Marcellino LH, Clement D, Micheli F, Gramacho KP | display-authors = 6 | title = Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae) | journal = PLOS ONE | volume = 12 | issue = 2 | pages = e0170799 | year = 2017 | pmid = 28187131 | pmc = 5302445 | doi = 10.1371/journal.pone.0170799 | bibcode = 2017PLoSO..1270799D | doi-access = free }}</ref>
|<ref name="pmid28187131">{{cite journal | vauthors = da Silva RA, Souza G, Lemos LS, Lopes UV, Patrocínio NG, Alves RM, Marcellino LH, Clement D, Micheli F, Gramacho KP | display-authors = 6 | title = Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae) | journal = PLOS ONE | volume = 12 | issue = 2 | pages = e0170799 | year = 2017 | pmid = 28187131 | pmc = 5302445 | doi = 10.1371/journal.pone.0170799 | bibcode = 2017PLoSO..1270799D | doi-access = free }}</ref>
|-
|-
!43
! style="background:lightgreen;"|[[Eucalyptus]]<br />(''Eucalyptus'')
! style="background:lightgreen;" |[[Eucalyptus]]<br />(''Eucalyptus'')
| 22
| 22
| [[File:700 yr red river gum02.jpg|100px]] || [[File:Karyotype of river red gum (Eucalyptus camaldulensis).png|150px]]
| [[File:700 yr red river gum02.jpg|100px]] || [[File:Karyotype of river red gum (Eucalyptus camaldulensis).png|150px]]
Line 298: Line 341:
|<ref name="pmid16076778">{{cite journal | vauthors = Balasaravanan T, Chezhian P, Kamalakannan R, Ghosh M, Yasodha R, Varghese M, Gurumurthi K | title = Determination of inter- and intra-species genetic relationships among six Eucalyptus species based on inter-simple sequence repeats (ISSR) | journal = Tree Physiology | volume = 25 | issue = 10 | pages = 1295–302 | date = October 2005 | pmid = 16076778 | doi = 10.1093/treephys/25.10.1295 | doi-access = free }}</ref>
|<ref name="pmid16076778">{{cite journal | vauthors = Balasaravanan T, Chezhian P, Kamalakannan R, Ghosh M, Yasodha R, Varghese M, Gurumurthi K | title = Determination of inter- and intra-species genetic relationships among six Eucalyptus species based on inter-simple sequence repeats (ISSR) | journal = Tree Physiology | volume = 25 | issue = 10 | pages = 1295–302 | date = October 2005 | pmid = 16076778 | doi = 10.1093/treephys/25.10.1295 | doi-access = free }}</ref>
|-
|-
!44
! style="background:pink;"|[[Virginia opossum]]<br />(''Didelphis virginiana'')
! style="background:pink;" |[[Virginia opossum]]<br />(''Didelphis virginiana'')
| 22
| 22
| [[File:Opossum 2.jpg|100px]]
| [[File:Opossum 2.jpg|100px]]
Line 304: Line 348:
|<ref name = "OP">{{cite journal | vauthors = Biggers JD, Fritz HI, Hare WC, Mcfeely RA | title = Chromosomes of American Marsupials | journal = Science | volume = 148 | issue = 3677 | pages = 1602–3 | date = June 1965 | pmid = 14287602 | doi = 10.1126/science.148.3677.1602 | s2cid = 46617910 | bibcode = 1965Sci...148.1602B }}</ref>
|<ref name = "OP">{{cite journal | vauthors = Biggers JD, Fritz HI, Hare WC, Mcfeely RA | title = Chromosomes of American Marsupials | journal = Science | volume = 148 | issue = 3677 | pages = 1602–3 | date = June 1965 | pmid = 14287602 | doi = 10.1126/science.148.3677.1602 | s2cid = 46617910 | bibcode = 1965Sci...148.1602B }}</ref>
|-
|-
!45
! style="background:lightgreen;"|[[Phaseolus|Bean]]<br />(''Phaseolus'' sp.)
! style="background:lightgreen;" |[[Phaseolus|Bean]]<br />(''Phaseolus'' sp.)
| 22
| 22
| [[File:Phaseolus vulgaris MHNT.BOT.2016.24.73.jpg|100px]] || [[File:Karyotype of Common bean (Phaseolus vulgaris).png|150px]]
| [[File:Phaseolus vulgaris MHNT.BOT.2016.24.73.jpg|100px]] || [[File:Karyotype of Common bean (Phaseolus vulgaris).png|150px]]
Line 310: Line 355:
|<ref name="Simmonds"/>
|<ref name="Simmonds"/>
|-
|-
!46
! style="background:pink;"|[[Snail]]
! style="background:pink;" |[[Snail]]
| 24
| 24
| [[File:Grapevinesnail 01.jpg|100px]] ||
| [[File:Grapevinesnail 01.jpg|100px]] ||
Line 316: Line 362:
|
|
|-
|-
!47
! style="background:lightgreen;"|[[Melon]]<br />(''Cucumis melo'')
! style="background:lightgreen;" |[[Melon]]<br />(''Cucumis melo'')
| 24
| 24
| [[File:Cucumis melo 34.jpg|100px]] || [[File:Karyotype of melon (Cucumis melo L.).png|150px]]
| [[File:Cucumis melo 34.jpg|100px]] || [[File:Karyotype of melon (Cucumis melo L.).png|150px]]
|
|
|<ref name="pmid25612459">{{cite journal | vauthors = Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, Ramos-Onsins SE, Garcia-Mas J | display-authors = 6 | title = Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly | journal = BMC Genomics | volume = 16 | page = 4 | date = January 2015 | issue = 1 | pmid = 25612459 | pmc = 4316794 | doi = 10.1186/s12864-014-1196-3 }}</ref>
|<ref name="pmid25612459">{{cite journal | vauthors = Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, Ramos-Onsins SE, Garcia-Mas J | display-authors = 6 | title = Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly | journal = BMC Genomics | volume = 16 | page = 4 | date = January 2015 | issue = 1 | pmid = 25612459 | pmc = 4316794 | doi = 10.1186/s12864-014-1196-3 | doi-access = free }}</ref>
|-
|-
!48
! style="background:lightgreen;"|[[Rice]]<br />(''Oryza sativa'')
! style="background:lightgreen;" |[[Rice]]<br />(''Oryza sativa'')
| 24
| 24
| [[File:US long grain rice.jpg|100px]] || [[File:Karyotype of rice (Oryza sativa).png|150px]]
| [[File:US long grain rice.jpg|100px]] || [[File:Karyotype of rice (Oryza sativa).png|150px]]
Line 328: Line 376:
|<ref name="Simmonds"/>
|<ref name="Simmonds"/>
|-
|-
!49
! style="background:lightgreen;"|[[Silverleaf nightshade]]<br />(''Solanum elaeagnifolium'')
! style="background:lightgreen;" |[[Silverleaf nightshade]]<br />(''Solanum elaeagnifolium'')
| 24
| 24
| [[File:Solanum elaeagnifolium.jpg|100px]] ||
| [[File:Solanum elaeagnifolium.jpg|100px]] ||
Line 334: Line 383:
|<ref>{{cite journal | vauthors = Heiser CB, Whitaker TW | title = Chromosome number, polyploidy, and growth habit in California weeds | journal = American Journal of Botany | volume = 35 | issue = 3 | pages = 179–86 | date = March 1948 | pmid = 18909963 | doi = 10.2307/2438241 | jstor = 2438241 }}</ref>
|<ref>{{cite journal | vauthors = Heiser CB, Whitaker TW | title = Chromosome number, polyploidy, and growth habit in California weeds | journal = American Journal of Botany | volume = 35 | issue = 3 | pages = 179–86 | date = March 1948 | pmid = 18909963 | doi = 10.2307/2438241 | jstor = 2438241 }}</ref>
|-
|-
!50
! style="background:lightgreen;"|[[Sweet chestnut]]<br />(''Castanea sativa'')
! style="background:lightgreen;" |[[Sweet chestnut]]<br />(''Castanea sativa'')
| 24
| 24
| [[File:Frucht der Edelkastanie.jpg|100px]] || [[File:Karyotype of Sweet chestnut (Castanea sativa).png|150px]]
| [[File:Frucht der Edelkastanie.jpg|100px]] || [[File:Karyotype of Sweet chestnut (Castanea sativa).png|150px]]
Line 340: Line 390:
|<ref name="Sweet_chestnut">{{cite journal | vauthors = Ivanova D, Vladimirov V | year = 2007 | title = Chromosome numbers of some woody species from the Bulgarian flora | url = http://www.bio.bas.bg/~phytolbalcan/PDF/13_2/13_2_09_Ivanova_&_Vladimirov.pdf | journal = Phytologia Balcanica | volume = 13 | issue = 2| pages = 205–207}}</ref>
|<ref name="Sweet_chestnut">{{cite journal | vauthors = Ivanova D, Vladimirov V | year = 2007 | title = Chromosome numbers of some woody species from the Bulgarian flora | url = http://www.bio.bas.bg/~phytolbalcan/PDF/13_2/13_2_09_Ivanova_&_Vladimirov.pdf | journal = Phytologia Balcanica | volume = 13 | issue = 2| pages = 205–207}}</ref>
|-
|-
!51
! style="background:lightgreen;"|[[Tomato]]<br />(''Solanum lycopersicum'')
! style="background:lightgreen;" |[[Tomato]]<br />(''Solanum lycopersicum'')
| 24
| 24
| [[File:Bright red tomato and cross section02.jpg|100px]] || [[File:Karyotype of tomato (Solanum lycopersicum).png|150px]]
| [[File:Bright red tomato and cross section02.jpg|100px]] || [[File:Karyotype of tomato (Solanum lycopersicum).png|150px]]
|
|
|<ref name="pmid17517142">{{cite journal | vauthors = Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG, Machado ML, Matzke M, Schwarzacher T | display-authors = 6 | title = Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species | journal = BMC Plant Biology | volume = 7 | page = 24 | date = May 2007 | pmid = 17517142 | pmc = 1899175 | doi = 10.1186/1471-2229-7-24 }}</ref>
|<ref name="pmid17517142">{{cite journal | vauthors = Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG, Machado ML, Matzke M, Schwarzacher T | display-authors = 6 | title = Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species | journal = BMC Plant Biology | volume = 7 | page = 24 | date = May 2007 | pmid = 17517142 | pmc = 1899175 | doi = 10.1186/1471-2229-7-24 | doi-access = free }}</ref>
|-
|-
!52
! style="background:lightgreen;"|[[European beech]]<br />(''Fagus sylvatica'')
! style="background:lightgreen;" |[[European beech]]<br />(''Fagus sylvatica'')
| 24
| 24
| [[File:Hayedomasaustral.jpg|100px]] || [[File:Karyotype of European beech (Fagus sylvatica).png|150px]]
| [[File:Hayedomasaustral.jpg|100px]] || [[File:Karyotype of European beech (Fagus sylvatica).png|150px]]
|
|
|<ref name="Fagus_sylvatica">{{cite journal | doi = 10.1111/j.1365-2745.2012.02017.x | volume=100 | issue=6 | title=Biological Flora of the British Isles:Fagus sylvatica | year=2012 | journal=Journal of Ecology | pages=1557–1608 | vauthors = Packham JR, Thomas PA, Atkinson MD, Degen T | s2cid=85095298 }}</ref>
|<ref name="Fagus_sylvatica">{{cite journal | doi = 10.1111/j.1365-2745.2012.02017.x | volume=100 | issue=6 | title=Biological Flora of the British Isles:Fagus sylvatica | year=2012 | journal=Journal of Ecology | pages=1557–1608 | vauthors = Packham JR, Thomas PA, Atkinson MD, Degen T | bibcode=2012JEcol.100.1557P | s2cid=85095298 }}</ref>
|-
|-
!53
! style="background:lightgreen;"|[[Bittersweet nightshade]]<br />(''Solanum dulcamara'')
! style="background:lightgreen;" |[[Bittersweet nightshade]]<br />(''Solanum dulcamara'')
| 24
| 24
| [[File:SolanumDulcamara-bloem-sm.jpg|100px]] ||
| [[File:SolanumDulcamara-bloem-sm.jpg|100px]] ||
Line 358: Line 411:
|<ref>{{cite book| vauthors = Abrams L|title=Illustrated Flora of the Pacific States. Volume 3.|year=1951|publisher=Stanford University Press|page=866}}</ref><ref>{{cite book| vauthors = Stace C |author-link = Clive Stace|title=New Flora of the British Isles. | edition = Second |year=1997|publisher=Cambridge, UK|page=1130}}</ref>
|<ref>{{cite book| vauthors = Abrams L|title=Illustrated Flora of the Pacific States. Volume 3.|year=1951|publisher=Stanford University Press|page=866}}</ref><ref>{{cite book| vauthors = Stace C |author-link = Clive Stace|title=New Flora of the British Isles. | edition = Second |year=1997|publisher=Cambridge, UK|page=1130}}</ref>
|-
|-
!54
! style="background:lightgreen;"|[[Cork oak]]<br />(''Quercus suber'')
! style="background:lightgreen;" |[[Cork oak]]<br />(''Quercus suber'')
| 24
| 24
| [[File:ChampagneCorksLarge.jpg|100px]] || [[File:Karyotype of Cork oak (Quercus suber).png|150px]]
| [[File:ChampagneCorksLarge.jpg|100px]] || [[File:Karyotype of Cork oak (Quercus suber).png|150px]]
Line 364: Line 418:
|<ref name="Cork_oak">Zaldoš V, Papeš D, Brown SC, Panaus O, Šiljak-Yakovlev S (1998) [https://www.researchgate.net/publication/233747559_Genome_size_and_base_composition_of_seven_Quercus_species_Inter-_and_intra-population_variation Genome size and base composition of seven Quercus species: inter- and intra-population variation.] ''Genome'', 41: 162–168.</ref>
|<ref name="Cork_oak">Zaldoš V, Papeš D, Brown SC, Panaus O, Šiljak-Yakovlev S (1998) [https://www.researchgate.net/publication/233747559_Genome_size_and_base_composition_of_seven_Quercus_species_Inter-_and_intra-population_variation Genome size and base composition of seven Quercus species: inter- and intra-population variation.] ''Genome'', 41: 162–168.</ref>
|-
|-
!55
! style="background:pink;"|[[Edible frog]]<br />(''Pelophylax'' [[Klepton|kl.]] ''esculentus'')
! style="background:pink;" |[[Edible frog]]<br />(''Pelophylax'' [[Klepton|kl.]] ''esculentus'')
| 26
| 26
| [[File:Rana esculenta on Nymphaea edit.JPG|100px]] || [[File:Karyotype of Edible frog (Pelophylax esculentus).png|150px]]
| [[File:Rana esculenta on Nymphaea edit.JPG|100px]] || [[File:Karyotype of Edible frog (Pelophylax esculentus).png|150px]]
| Edible frog is the fertile hybrid of the [[pool frog]] and the [[marsh frog]].<ref name="DoležálkováSember2016">{{cite journal | vauthors = Doležálková M, Sember A, Marec F, Ráb P, Plötner J, Choleva L | title = Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? | journal = BMC Genetics | volume = 17 | issue = 1 | page = 100 | date = July 2016 | pmid = 27368375 | pmc = 4930623 | doi = 10.1186/s12863-016-0408-z }}</ref>
| Edible frog is the fertile hybrid of the [[pool frog]] and the [[marsh frog]].<ref name="DoležálkováSember2016">{{cite journal | vauthors = Doležálková M, Sember A, Marec F, Ráb P, Plötner J, Choleva L | title = Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? | journal = BMC Genetics | volume = 17 | issue = 1 | page = 100 | date = July 2016 | pmid = 27368375 | pmc = 4930623 | doi = 10.1186/s12863-016-0408-z | doi-access = free }}</ref>
|<ref name="ZaleśnaCholeva2011">{{cite journal | vauthors = Zaleśna A, Choleva L, Ogielska M, Rábová M, Marec F, Ráb P | title = Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization | journal = Cytogenetic and Genome Research | volume = 134 | issue = 3 | pages = 206–12 | year = 2011 | pmid = 21555873 | doi = 10.1159/000327716 | s2cid = 452336 }}</ref>
|<ref name="ZaleśnaCholeva2011">{{cite journal | vauthors = Zaleśna A, Choleva L, Ogielska M, Rábová M, Marec F, Ráb P | title = Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization | journal = Cytogenetic and Genome Research | volume = 134 | issue = 3 | pages = 206–12 | year = 2011 | pmid = 21555873 | doi = 10.1159/000327716 | s2cid = 452336 }}</ref>
|-
|-
!56
! style="background:pink;"|[[Axolotl]]<br />(''Ambystoma mexicanum'')
! style="background:pink;" |[[Axolotl]]<br />(''Ambystoma mexicanum'')
| 28
| 28
| [[File:AxolotlBE.jpg|100px]] || [[File:Karyotype of axolotl (Ambystoma mexicanum).png|150px]]
| [[File:AxolotlBE.jpg|100px]] || [[File:Karyotype of axolotl (Ambystoma mexicanum).png|150px]]
Line 376: Line 432:
|<ref name="pmid26553646">{{cite journal | vauthors = Keinath MC, Timoshevskiy VA, Timoshevskaya NY, Tsonis PA, Voss SR, Smith JJ | title = Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing | journal = Scientific Reports | volume = 5 | page = 16413 | date = November 2015 | pmid = 26553646 | pmc = 4639759 | doi = 10.1038/srep16413 | bibcode = 2015NatSR...516413K }}</ref>
|<ref name="pmid26553646">{{cite journal | vauthors = Keinath MC, Timoshevskiy VA, Timoshevskaya NY, Tsonis PA, Voss SR, Smith JJ | title = Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing | journal = Scientific Reports | volume = 5 | page = 16413 | date = November 2015 | pmid = 26553646 | pmc = 4639759 | doi = 10.1038/srep16413 | bibcode = 2015NatSR...516413K }}</ref>
|-
|-
!57
! style="background:pink;"|[[Bed bug (insect)|Bed bug]]<br />(''Cimex lectularius'')
! style="background:pink;" |[[Cimex lectularius|Bed bug]]<br />(''Cimex lectularius'')
| {{sort|29|29–47}}
| {{sort|29|29–47}}
| [[File:Bedbug004.jpg|100px]] || [[File:Karyotype of male bed bug (Cimex lectularius).png|150px]]
| [[File:Bedbug004.jpg|100px]] || [[File:Karyotype of male bed bug (Cimex lectularius).png|150px]]
| 26 autosomes and varying number of the sex chromosomes from three (X<sub>1</sub>X<sub>2</sub>Y) to 21 (X<sub>1</sub>X<sub>2</sub>Y+18 extra Xs).<ref name="pmid28123691">{{cite journal | vauthors = Sadílek D, Angus RB, Šťáhlavský F, Vilímová J | title = Comparison of different cytogenetic methods and tissue suitability for the study of chromosomes in ''Cimex lectularius'' (Heteroptera, Cimicidae) | journal = Comparative Cytogenetics | volume = 10 | issue = 4 | pages = 731–752 | year = 2016 | pmid = 28123691 | pmc = 5240521 | doi = 10.3897/CompCytogen.v10i4.10681 }}</ref>
| 26 autosomes and varying number of the sex chromosomes from three (X<sub>1</sub>X<sub>2</sub>Y) to 21 (X<sub>1</sub>X<sub>2</sub>Y+18 extra Xs).<ref name="pmid28123691">{{cite journal | vauthors = Sadílek D, Angus RB, Šťáhlavský F, Vilímová J | title = Comparison of different cytogenetic methods and tissue suitability for the study of chromosomes in ''Cimex lectularius'' (Heteroptera, Cimicidae) | journal = Comparative Cytogenetics | volume = 10 | issue = 4 | pages = 731–752 | year = 2016 | pmid = 28123691 | pmc = 5240521 | doi = 10.3897/CompCytogen.v10i4.10681 | doi-access = free }}</ref>
|<ref name="pmid28123691"/>
|<ref name="pmid28123691"/>
|-
|-
!58
! style="background:pink;"|[[Pill millipede]]<br />(''Arthrosphaera magna attems'')
! style="background:pink;" |[[Pill millipede]]<br />(''Arthrosphaera magna attems'')
| 30
| 30
| [[File:Pillmillipede talakaveri.jpg|100px]] ||
| [[File:Pillmillipede talakaveri.jpg|100px]] ||
Line 388: Line 446:
|<ref name=Caryologia>{{Cite journal| vauthors = Achar KP |title=Analysis of male meiosis in seven species of Indian pill-millipede|journal=Caryologia|volume=39|year=1986|issue=39|pages=89–101|doi=10.1080/00087114.1986.10797770|doi-access=free}}</ref>
|<ref name=Caryologia>{{Cite journal| vauthors = Achar KP |title=Analysis of male meiosis in seven species of Indian pill-millipede|journal=Caryologia|volume=39|year=1986|issue=39|pages=89–101|doi=10.1080/00087114.1986.10797770|doi-access=free}}</ref>
|-
|-
!59
! style="background:pink;"|[[Giraffe]]<br />(''Giraffa camelopardalis'')
! style="background:pink;" |[[Giraffe]]<br />(''Giraffa camelopardalis'')
| 30
| 30
| [[File:Giraffen.jpg|100px]] || [[File:Karyotype of giraffe (Giraffa camelopardalis).png|150px]]
| [[File:Giraffen.jpg|100px]] || [[File:Karyotype of giraffe (Giraffa camelopardalis).png|150px]]
Line 394: Line 453:
|<ref name="pmid19096208">{{cite journal | vauthors = Huang L, Nesterenko A, Nie W, Wang J, Su W, Graphodatsky AS, Yang F | title = Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints | journal = Cytogenetic and Genome Research | volume = 122 | issue = 2 | pages = 132–8 | year = 2008 | pmid = 19096208 | doi = 10.1159/000163090 | url = https://www.researchgate.net/publication/23677169 | s2cid = 6674957 }}</ref>
|<ref name="pmid19096208">{{cite journal | vauthors = Huang L, Nesterenko A, Nie W, Wang J, Su W, Graphodatsky AS, Yang F | title = Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints | journal = Cytogenetic and Genome Research | volume = 122 | issue = 2 | pages = 132–8 | year = 2008 | pmid = 19096208 | doi = 10.1159/000163090 | url = https://www.researchgate.net/publication/23677169 | s2cid = 6674957 }}</ref>
|-
|-
!60
! style="background:pink;"|[[American mink]]<br />(''Neogale vison'')
! style="background:pink;" |[[American mink]]<br />(''Neogale vison'')
| 30
| 30
| [[File:American mink geograph.co.uk 2083077.jpg|100px]] ||
| [[File:American mink geograph.co.uk 2083077.jpg|100px]] ||
Line 400: Line 460:
|
|
|-
|-
!61
! style="background:lightgreen;"|[[Pistachio]]<br />(''Pistacia vera'')
! style="background:lightgreen;" |[[Pistachio]]<br />(''Pistacia vera'')
| 30
| 30
| [[File:ARS pistachio.jpg|100px]] || [[File:Karyotype of Pistachio (Pistacia vera).png|150px]]
| [[File:ARS pistachio.jpg|100px]] || [[File:Karyotype of Pistachio (Pistacia vera).png|150px]]
Line 406: Line 467:
|<ref name="pmid26633808">{{cite journal | vauthors = Sola-Campoy PJ, Robles F, Schwarzacher T, Ruiz Rejón C, de la Herrán R, Navajas-Pérez R | title = The Molecular Cytogenetic Characterization of Pistachio (Pistacia vera L.) Suggests the Arrest of Recombination in the Largest Heteropycnotic Pair HC1 | journal = PLOS ONE | volume = 10 | issue = 12 | pages = e0143861 | year = 2015 | pmid = 26633808 | pmc = 4669136 | doi = 10.1371/journal.pone.0143861 | bibcode = 2015PLoSO..1043861S | doi-access = free }}</ref>
|<ref name="pmid26633808">{{cite journal | vauthors = Sola-Campoy PJ, Robles F, Schwarzacher T, Ruiz Rejón C, de la Herrán R, Navajas-Pérez R | title = The Molecular Cytogenetic Characterization of Pistachio (Pistacia vera L.) Suggests the Arrest of Recombination in the Largest Heteropycnotic Pair HC1 | journal = PLOS ONE | volume = 10 | issue = 12 | pages = e0143861 | year = 2015 | pmid = 26633808 | pmc = 4669136 | doi = 10.1371/journal.pone.0143861 | bibcode = 2015PLoSO..1043861S | doi-access = free }}</ref>
|-
|-
!62
! style="background:pink;"|'''[[Antheraea yamamai|Japanese oak silkmoth]]''' (''Antheraea yamamai'')
! style="background:pink;" |'''[[Antheraea yamamai|Japanese oak silkmoth]]''' (''Antheraea yamamai'')
|31
|31
|[[File:Antheraea yamamai male sjh.jpg|thumb]]
|[[File:Antheraea yamamai male sjh.jpg|100px]]
|[[File:Antheraea yamamai karyotype.jpg|thumb]]
|[[File:Antheraea yamamai karyotype.jpg|100px]]
|
|
|<ref>{{cite journal | vauthors = Kim SR, Kwak W, Kim H, Caetano-Anolles K, Kim KY, Kim SB, Choi KH, Kim SW, Hwang JS, Kim M, Kim I, Goo TW, Park SW | display-authors = 6 | title = Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae | journal = GigaScience | volume = 7 | issue = 1 | pages = 1–11 | date = January 2018 | pmid = 29186418 | pmc = 5774507 | doi = 10.1093/gigascience/gix113 | url = }}</ref>
|<ref>{{cite journal | vauthors = Kim SR, Kwak W, Kim H, Caetano-Anolles K, Kim KY, Kim SB, Choi KH, Kim SW, Hwang JS, Kim M, Kim I, Goo TW, Park SW | display-authors = 6 | title = Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae | journal = GigaScience | volume = 7 | issue = 1 | pages = 1–11 | date = January 2018 | pmid = 29186418 | pmc = 5774507 | doi = 10.1093/gigascience/gix113 | url = }}</ref>
|-
|-
!63
! style="background:lightblue;"|[[Baker's yeast]]<br />(''Saccharomyces cerevisiae'')
! style="background:lightblue;" |[[Baker's yeast]]<br />(''Saccharomyces cerevisiae'')
| 32
| 32
| [[File:S cerevisiae under DIC microscopy.jpg|100px]] ||
| [[File:S cerevisiae under DIC microscopy.jpg|100px]] ||
Line 419: Line 482:
|
|
|-
|-
!64
! style="background:pink;"|[[European honey bee]]<br />(''Apis mellifera'')
! style="background:pink;" |[[European honey bee]]<br />(''Apis mellifera'')
| 32/16
| 32/16
| [[File:BeeCropped.jpg|100px]] || [[File:Karyotype of Honey bee (Apis mellifera).png|150px]]
| [[File:BeeCropped.jpg|100px]] || [[File:Karyotype of Honey bee (Apis mellifera).png|150px]]
| 32 for females (2n = 32), males are haploid and thus have 16 (1n =16).<ref name="pmid19841734"/>
| 32 for females (2n = 32), males are haploid and thus have 16 (1n =16).<ref name="pmid19841734"/>
|<ref name="pmid19841734">{{cite journal | vauthors = Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M | title = Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway | journal = PLOS Biology | volume = 7 | issue = 10 | pages = e1000222 | date = October 2009 | pmid = 19841734 | pmc = 2758576 | doi = 10.1371/journal.pbio.1000222 }}</ref>
|<ref name="pmid19841734">{{cite journal | vauthors = Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M | title = Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway | journal = PLOS Biology | volume = 7 | issue = 10 | pages = e1000222 | date = October 2009 | pmid = 19841734 | pmc = 2758576 | doi = 10.1371/journal.pbio.1000222 | doi-access = free }}</ref>
|-
|-
!65
! style="background:pink;"|[[American badger]]<br />(''Taxidea taxus'')
! style="background:pink;" |[[American badger]]<br />(''Taxidea taxus'')
| 32
| 32
| [[File:AmericanBadger.JPG|100px]] ||
| [[File:AmericanBadger.JPG|100px]] ||
Line 431: Line 496:
|
|
|-
|-
!66
! style="background:lightgreen;"|[[Alfalfa]]<br />(''Medicago sativa'')
! style="background:lightgreen;" |[[Alfalfa]]<br />(''Medicago sativa'')
| 32
| 32
| [[File:Graines de luzerne bio germées - 001.JPG|100px]] || [[File:Karyotype of tetraploid Alfalfa (Medicago sativa ssp falcata).png|150px]]
| [[File:Graines de luzerne bio germées - 001.JPG|100px]] || [[File:Karyotype of tetraploid Alfalfa (Medicago sativa ssp falcata).png|150px]]
Line 437: Line 503:
|<ref name="Simmonds">{{Cite book|editor= Simmonds, NW |title=Evolution of crop plants |publisher=Longman |location=New York |year=1976 |isbn=978-0-582-44496-6 }}{{Page needed|date=September 2010}}</ref>
|<ref name="Simmonds">{{Cite book|editor= Simmonds, NW |title=Evolution of crop plants |publisher=Longman |location=New York |year=1976 |isbn=978-0-582-44496-6 }}{{Page needed|date=September 2010}}</ref>
|-
|-
!67
! style="background:pink;"|[[Red fox]]<br />(''Vulpes vulpes'')
! style="background:pink;" |[[Red fox]]<br />(''Vulpes vulpes'')
| 34
| 34
| [[File:Vulpes vulpes 2.jpg|100px]] ||
| [[File:Vulpes vulpes 2.jpg|100px]] ||
Line 443: Line 510:
|<ref name="ilar3923182">{{cite journal | last1 = Rubtsov | first1 = Nikolai B. | title = The Fox Gene Map | journal = ILAR | volume = 39 | issue = 2–3 | pages = 182–188 | date = 1 April 1998 | doi = 10.1093/ilar.39.2-3.182 | pmid = 11528077 | doi-access = free }}</ref>
|<ref name="ilar3923182">{{cite journal | last1 = Rubtsov | first1 = Nikolai B. | title = The Fox Gene Map | journal = ILAR | volume = 39 | issue = 2–3 | pages = 182–188 | date = 1 April 1998 | doi = 10.1093/ilar.39.2-3.182 | pmid = 11528077 | doi-access = free }}</ref>
|-
|-
!68
! style="background:lightgreen;"|[[Sunflower]]<br />(''Helianthus annuus'')
! style="background:lightgreen;" |[[Sunflower]]<br />(''Helianthus annuus'')
| 34
| 34
| [[File:Lule Dielli.JPG|100px]] || [[File:Karyotype of sunflower (Helianthus annuus).png|150px]]
| [[File:Lule Dielli.JPG|100px]] || [[File:Karyotype of sunflower (Helianthus annuus).png|150px]]
Line 449: Line 517:
|<ref name="pmid23316437">{{cite journal | vauthors = Feng J, Liu Z, Cai X, Jan CC | title = Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones | journal = G3 | volume = 3 | issue = 1 | pages = 31–40 | date = January 2013 | pmid = 23316437 | pmc = 3538341 | doi = 10.1534/g3.112.004846 }}</ref>
|<ref name="pmid23316437">{{cite journal | vauthors = Feng J, Liu Z, Cai X, Jan CC | title = Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones | journal = G3 | volume = 3 | issue = 1 | pages = 31–40 | date = January 2013 | pmid = 23316437 | pmc = 3538341 | doi = 10.1534/g3.112.004846 }}</ref>
|-
|-
!69
! style="background:pink;"|[[Porcupine]]<br />(''Erethizon dorsatum'')
! style="background:pink;" |[[Porcupine]]<br />(''Erethizon dorsatum'')
| 34
| 34
| [[File:Porcupine-BioDome.jpg|100px]] ||
| [[File:Porcupine-BioDome.jpg|100px]] ||
Line 455: Line 524:
|<ref name="resources.metapress.com"/>
|<ref name="resources.metapress.com"/>
|-
|-
!70
! style="background:lightgreen;"|[[Globe artichoke]]<br />(''Cynara cardunculus'' var. ''scolymus'')
! style="background:lightgreen;" |[[Globe artichoke]]<br />(''Cynara cardunculus'' var. ''scolymus'')
| 34
| 34
| [[File:Artichoke J1.jpg|100px]] || [[File:Karyotype of globe artichoke.png|150px]]
| [[File:Artichoke J1.jpg|100px]] || [[File:Karyotype of globe artichoke.png|150px]]
|
|
|<ref name="pmid27830052">{{cite journal | vauthors = Giorgi D, Pandozy G, Farina A, Grosso V, Lucretti S, Gennaro A, Crinò P, Saccardo F | display-authors = 6 | title = First detailed karyo-morphological analysis and molecular cytological study of leafy cardoon and globe artichoke, two multi-use Asteraceae crops | journal = Comparative Cytogenetics | volume = 10 | issue = 3 | pages = 447–463 | year = 2016 | pmid = 27830052 | pmc = 5088355 | doi = 10.3897/CompCytogen.v10i3.9469 }}</ref>
|<ref name="pmid27830052">{{cite journal | vauthors = Giorgi D, Pandozy G, Farina A, Grosso V, Lucretti S, Gennaro A, Crinò P, Saccardo F | display-authors = 6 | title = First detailed karyo-morphological analysis and molecular cytological study of leafy cardoon and globe artichoke, two multi-use Asteraceae crops | journal = Comparative Cytogenetics | volume = 10 | issue = 3 | pages = 447–463 | year = 2016 | pmid = 27830052 | pmc = 5088355 | doi = 10.3897/CompCytogen.v10i3.9469 | doi-access = free }}</ref>
|-
|-
!71
! style="background:pink;"|[[Yellow mongoose]]<br />(''Cynictis penicillata'')
! style="background:pink;" |[[Yellow mongoose]]<br />(''Cynictis penicillata'')
| 36
| 36
| [[File:Yellow mongoose 1.jpg|100px]] ||
| [[File:Yellow mongoose 1.jpg|100px]] ||
Line 467: Line 538:
|
|
|-
|-
!72
! style="background:pink;"|[[Tibetan sand fox]]<br />(''Vulpes ferrilata'')
! style="background:pink;" |[[Tibetan sand fox]]<br />(''Vulpes ferrilata'')
| 36
| 36
| [[File:Tibet Fox.jpg|100px]] ||
| [[File:Tibet Fox.jpg|100px]] ||
Line 473: Line 545:
|
|
|-
|-
!73
! style="background:pink;"|[[Starfish]]<br />(''Asteroidea'')
! style="background:pink;" |[[Starfish]]<br />(''Asteroidea'')
| 36
| 36
| [[File:Nerr0878.jpg|100px]] ||
| [[File:Nerr0878.jpg|100px]] ||
Line 479: Line 552:
|
|
|-
|-
!74
! style="background:pink;"|[[Red panda]]<br />(''Ailurus fulgens'')
! style="background:pink;" |[[Red panda]]<br />(''Ailurus fulgens'')
| 36
| 36
| [[File:Ailurus fulgens RoterPanda LesserPanda.jpg|100px]] ||
| [[File:Ailurus fulgens RoterPanda LesserPanda.jpg|100px]] ||
Line 485: Line 559:
|
|
|-
|-
!75
! style="background:pink;"|[[Meerkat]]<br />(''Suricata suricatta'')
! style="background:pink;" |[[Meerkat]]<br />(''Suricata suricatta'')
| 36
| 36
| [[File:Meerkat feb 09.jpg|100px]] ||
| [[File:Meerkat feb 09.jpg|100px]] ||
Line 491: Line 566:
|
|
|-
|-
!76
! style="background:lightgreen;"|[[Cassava]]<br />(''Manihot esculenta'')
! style="background:lightgreen;" |[[Cassava]]<br />(''Manihot esculenta'')
| 36
| 36
| [[File:Manihot esculenta 001.jpg|100px]] || [[File:Karyotype of Cassava (Manihot esculenta).png|150px]]
| [[File:Manihot esculenta 001.jpg|100px]] || [[File:Karyotype of Cassava (Manihot esculenta).png|150px]]
Line 497: Line 573:
|<ref name="pmid24727655">{{cite journal | vauthors = An F, Fan J, Li J, Li QX, Li K, Zhu W, Wen F, Carvalho LJ, Chen S | display-authors = 6 | title = Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes | journal = PLOS ONE | volume = 9 | issue = 4 | pages = e85991 | year = 2014 | pmid = 24727655 | pmc = 3984080 | doi = 10.1371/journal.pone.0085991 | bibcode = 2014PLoSO...985991A | doi-access = free }}</ref>
|<ref name="pmid24727655">{{cite journal | vauthors = An F, Fan J, Li J, Li QX, Li K, Zhu W, Wen F, Carvalho LJ, Chen S | display-authors = 6 | title = Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes | journal = PLOS ONE | volume = 9 | issue = 4 | pages = e85991 | year = 2014 | pmid = 24727655 | pmc = 3984080 | doi = 10.1371/journal.pone.0085991 | bibcode = 2014PLoSO...985991A | doi-access = free }}</ref>
|-
|-
!77
! style="background:pink;"|[[Long-nosed cusimanse]]<br />(''Crossarchus obscurus'')
! style="background:pink;" |[[Long-nosed cusimanse]]<br />(''Crossarchus obscurus'')
| 36
| 36
| [[File:Crossarchus obscurus Plzen zoo 02.2011.jpg|100px]] ||
| [[File:Crossarchus obscurus Plzen zoo 02.2011.jpg|100px]] ||
Line 503: Line 580:
|
|
|-
|-
!78
! style="background:pink;"|[[Earthworm]]<br />(''Lumbricus terrestris'')
! style="background:pink;" |[[Earthworm]]<br />(''Lumbricus terrestris'')
| 36
| 36
| [[File:Regenwurm1.jpg|100px]] ||
| [[File:Regenwurm1.jpg|100px]] ||
Line 509: Line 587:
|
|
|-
|-
!79
! style="background:pink;"|[[African clawed frog]]<br />(''Xenopus laevis'')
! style="background:pink;" |[[African clawed frog]]<br />(''Xenopus laevis'')
| 36
| 36
| [[File:Xenopus laevis 1.jpg|100px]] || [[File:Karyotype of African clawed frog (Xenopus laevis).png|150px]]
| [[File:Xenopus laevis 1.jpg|100px]] || [[File:Karyotype of African clawed frog (Xenopus laevis).png|150px]]
Line 515: Line 594:
|<ref name="ReferenceA"/>
|<ref name="ReferenceA"/>
|-
|-
!80
! style="background:lightgreen;"|[[Waterwheel plant]]<br />(''Aldrovanda vesiculosa'')
! style="background:lightgreen;" |[[Waterwheel plant]]<br />(''Aldrovanda vesiculosa'')
| 38
| 38
| [[File:Aldrovanda vesiculosa.jpg|100px]] ||
| [[File:Aldrovanda vesiculosa.jpg|100px]] ||
Line 521: Line 601:
|<ref name="carnivorous plants"/>
|<ref name="carnivorous plants"/>
|-
|-
!81
! style="background:pink;"|[[Tiger]]<br />(''Panthera tigris'')
! style="background:pink;" |[[Tiger]]<br />(''Panthera tigris'')
| 38
| 38
| [[File:Tigress at Jim Corbett National Park.jpg|100px]] || [[File:Karyotype of Siberian tiger.png|150px]]
| [[File:Tigress at Jim Corbett National Park.jpg|100px]] || [[File:Karyotype of Siberian tiger.png|150px]]
Line 527: Line 608:
|
|
|-
|-
!82
! style="background:pink;"|[[Sea otter]]<br />(''Enhydra lutris'')
! style="background:pink;" |[[Sea otter]]<br />(''Enhydra lutris'')
| 38
| 38
| [[File:Sea otter.jpg|100px]] ||
| [[File:Sea otter.jpg|100px]] ||
Line 533: Line 615:
|
|
|-
|-
!83
! style="background:pink;"|[[Sable]]<br />(''Martes zibellina'')
! style="background:pink;" |[[Sable]]<br />(''Martes zibellina'')
| 38
| 38
| [[File:Sable - 2.png|100px]] ||
| [[File:Sable - 2.png|100px]] ||
Line 539: Line 622:
|
|
|-
|-
!84
! style="background:pink;"|[[Raccoon]]<br />(''Procyon lotor'')
! style="background:pink;" |[[Raccoon]]<br />(''Procyon lotor'')
| 38
| 38
| [[File:Procyon lotor (raccoon).jpg|100px]] ||
| [[File:Procyon lotor (raccoon).jpg|100px]] ||
Line 545: Line 629:
|<ref name="pmid19051045">{{cite journal | vauthors = Perelman PL, Graphodatsky AS, Dragoo JW, Serdyukova NA, Stone G, Cavagna P, Menotti A, Nie W, O'Brien PC, Wang J, Burkett S, Yuki K, Roelke ME, O'Brien SJ, Yang F, Stanyon R | display-authors = 6 | title = Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes | journal = Chromosome Research | volume = 16 | issue = 8 | pages = 1215–31 | year = 2008 | pmid = 19051045 | doi = 10.1007/s10577-008-1270-2 | s2cid = 952184 }}</ref>
|<ref name="pmid19051045">{{cite journal | vauthors = Perelman PL, Graphodatsky AS, Dragoo JW, Serdyukova NA, Stone G, Cavagna P, Menotti A, Nie W, O'Brien PC, Wang J, Burkett S, Yuki K, Roelke ME, O'Brien SJ, Yang F, Stanyon R | display-authors = 6 | title = Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes | journal = Chromosome Research | volume = 16 | issue = 8 | pages = 1215–31 | year = 2008 | pmid = 19051045 | doi = 10.1007/s10577-008-1270-2 | s2cid = 952184 }}</ref>
|-
|-
!85
! style="background:pink;"|[[Pine marten]]<br />(''Martes martes'')
! style="background:pink;" |[[Pine marten]]<br />(''Martes martes'')
| 38
| 38
| [[File:Baummarder 01.jpg|100px]] ||
| [[File:Baummarder 01.jpg|100px]] ||
Line 551: Line 636:
|
|
|-
|-
!86
! style="background:pink;"|[[Pig]]<br />(''Sus'')
! style="background:pink;" |[[Pig]]<br />(''Sus'')
| 38
| 38
| [[File:Sus Barbatus, the Bornean Bearded Pig (12616351323).jpg|100px]] || [[File:Karyotype of normal male pig.png|150px]]
| [[File:Sus Barbatus, the Bornean Bearded Pig (12616351323).jpg|100px]] || [[File:Karyotype of normal male pig.png|150px]]
Line 557: Line 643:
|
|
|-
|-
!87
! style="background:pink;"|[[Oriental small-clawed otter]]<br />(''Aonyx cinerea'')
! style="background:pink;" |[[Oriental small-clawed otter]]<br />(''Aonyx cinerea'')
| 38
| 38
| [[File:Otter - melbourne zoo.jpg|100px]] ||
| [[File:Otter - melbourne zoo.jpg|100px]] ||
Line 563: Line 650:
|
|
|-
|-
!88
! style="background:pink;"|[[Lion]]<br />(''Panthera leo'')
! style="background:pink;" |[[Lion]]<br />(''Panthera leo'')
| 38
| 38
| [[File:Lion Ngorongoro Crater.jpg|100px]] ||
| [[File:Lion Ngorongoro Crater.jpg|100px]] ||
Line 569: Line 657:
|
|
|-
|-
!89
! style="background:pink;"|[[Fisher (animal)|Fisher]]<br />(''Pekania pennanti'')
! style="background:pink;" |[[Fisher (animal)|Fisher]]<br />(''Pekania pennanti'')
| 38
| 38
| [[File:Martes martes crop.jpg|100px]] ||
| [[File:Martes martes crop.jpg|100px]] ||
Line 575: Line 664:
|
|
|-
|-
!90
! style="background:pink;"|[[European mink]]<br />(''Mustela lutreola'')
! style="background:pink;" |[[European mink]]<br />(''Mustela lutreola'')
| 38
| 38
| [[File:Europäischer Nerz.jpg|100px]] ||
| [[File:Europäischer Nerz.jpg|100px]] ||
Line 581: Line 671:
|
|
|-
|-
!91
! style="background:pink;"|[[Coati]]mundi
! style="background:pink;" |[[Coati]]mundi
| 38
| 38
| [[File:Coati.jpg|100px]] ||
| [[File:Coati.jpg|100px]] ||
Line 587: Line 678:
|
|
|-
|-
!92
! style="background:pink;"|[[Cat]]<br />(''Felis catus'')
! style="background:pink;" |[[Cat]]<br />(''Felis catus'')
| 38
| 38
| [[File:Kittyply edit1.jpg|100px]] || [[File:Karyotype of domestic cat (Felis catus).png|150px]]
| [[File:Kittyply edit1.jpg|100px]] || [[File:Karyotype of domestic cat (Felis catus).png|150px]]
Line 593: Line 685:
|
|
|-
|-
!93
! style="background:pink;"|[[Beech marten]]<br />(''Martes foina'')
! style="background:pink;" |[[Beech marten]]<br />(''Martes foina'')
| 38
| 38
| [[File:Steinmarder 01.jpg|100px]] ||
| [[File:Steinmarder 01.jpg|100px]] ||
Line 599: Line 692:
|
|
|-
|-
!94
! style="background:pink;"|[[Baja California rat snake]]<br />(''Bogertophis rosaliae'')
! style="background:pink;" |[[Baja California rat snake]]<br />(''Bogertophis rosaliae'')
| 38
| 38
| [[File:Bogertophis subocularis.jpg|100px]] ||
| [[File:Bogertophis subocularis.jpg|100px]] ||
Line 605: Line 699:
|<ref>{{cite journal | vauthors = Dowling HG, Price RM | title = A proposed new genus for Elaphe subocularis and Elaphe rosaliae. | journal = The Snake | date = 1988 | volume = 20 | issue = 1 | pages = 52–63 | url = http://dustyrhoads.x10host.com/Dusty_Rhoads_-_snake_biology/Publications_files/bogertophis_genus_dowling_and_price_1988.pdf | archive-url = https://web.archive.org/web/20141029225046/http://dustyrhoads.x10host.com/Dusty_Rhoads_-_snake_biology/Publications_files/bogertophis_genus_dowling_and_price_1988.pdf | archive-date = 29 October 2014 }}</ref>
|<ref>{{cite journal | vauthors = Dowling HG, Price RM | title = A proposed new genus for Elaphe subocularis and Elaphe rosaliae. | journal = The Snake | date = 1988 | volume = 20 | issue = 1 | pages = 52–63 | url = http://dustyrhoads.x10host.com/Dusty_Rhoads_-_snake_biology/Publications_files/bogertophis_genus_dowling_and_price_1988.pdf | archive-url = https://web.archive.org/web/20141029225046/http://dustyrhoads.x10host.com/Dusty_Rhoads_-_snake_biology/Publications_files/bogertophis_genus_dowling_and_price_1988.pdf | archive-date = 29 October 2014 }}</ref>
|-
|-
!95
! style="background:pink;"|[[American marten]]<br />(''Martes americana'')
! style="background:pink;" |[[American marten]]<br />(''Martes americana'')
| 38
| 38
| [[File:Marten with Flowers.jpg|100px]] ||
| [[File:Marten with Flowers.jpg|100px]] ||
Line 611: Line 706:
|
|
|-
|-
!96
! style="background:pink;"|[[Trans-Pecos ratsnake]]<br />(''Bogertophis subocularis'')
! style="background:pink;" |[[Trans-Pecos ratsnake]]<br />(''Bogertophis subocularis'')
| 40
| 40
| [[File:Trans-Pecos Rat Snake.jpg|100px]] ||
| [[File:Trans-Pecos Rat Snake.jpg|100px]] ||
|
|
|<ref>[https://link.springer.com/article/10.1007/BF02286946]: "Chromosomes of ''Elaphe subocularis'' (Reptilia: Serpentes), with the description of an in vivo technique for preparation of snake chromosomes".</ref>
|<ref>{{Cite journal |last=Baker |first=R. J. |last2=Bull |first2=J. J. |last3=Mengden |first3=G. A. |date=1971 |title=Chromosomes ofElaphe subocularis (Reptilia: Serpentes), with the description of an in vivo technique for preparation of snake chromosomes |url=https://doi.org/10.1007/BF02286946 |journal=Experientia |language=en |volume=27 |issue=10 |pages=1228–1229 |doi=10.1007/BF02286946}}</ref>
|-
|-
!97
! style="background:pink;"|[[Mouse]]<br />(''Mus musculus'')
! style="background:pink;" |[[Mouse]]<br />(''Mus musculus'')
| 40
| 40
| [[File:Мышь 2.jpg|100px]] || [[File:Karyotype of normal male mouse.png|150px]]
| [[File:Мышь 2.jpg|100px]] || [[File:Karyotype of normal male mouse.png|150px]]
Line 623: Line 720:
|<ref>[http://research.jax.org/grs/type/chromosomal_abberati.html The Jackson Laboratory] {{webarchive|url=https://web.archive.org/web/20130125072215/http://research.jax.org/grs/type/chromosomal_abberati.html |date=2013-01-25}}: "Mice with chromosomal aberrations".</ref>
|<ref>[http://research.jax.org/grs/type/chromosomal_abberati.html The Jackson Laboratory] {{webarchive|url=https://web.archive.org/web/20130125072215/http://research.jax.org/grs/type/chromosomal_abberati.html |date=2013-01-25}}: "Mice with chromosomal aberrations".</ref>
|-
|-
!98
! style="background:lightgreen;"|[[Mango]]<br />(''Mangifera indica'')
! style="background:lightgreen;" |[[Mango]]<br />(''Mangifera indica'')
| 40
| 40
| [[File:Mangga indramayu 071007-0327 rwg.jpg|100px]] ||
| [[File:Mangga indramayu 071007-0327 rwg.jpg|100px]] ||
Line 629: Line 727:
|<ref name="Simmonds"/>
|<ref name="Simmonds"/>
|-
|-
!99
! style="background:pink;"|[[Hyena]]<br />(''Hyaenidae'')
! style="background:pink;" |[[Hyena]]<br />(''Hyaenidae'')
| 40
| 40
| [[File:Spotted Hyena and young in Ngorogoro crater.jpg|100px]] ||
| [[File:Spotted Hyena and young in Ngorogoro crater.jpg|100px]] ||
Line 635: Line 734:
|
|
|-
|-
!100
! style="background:pink;"|[[Ferret]]<br />(''Mustela furo'')
! style="background:pink;" |[[Ferret]]<br />(''Mustela furo'')
| 40
| 40
| [[File:Furets albinos champagne et zibeline sable.jpg|100px]] ||
| [[File:Furets albinos champagne et zibeline sable.jpg|100px]] ||
Line 641: Line 741:
|
|
|-
|-
!101
! style="background:pink;"|[[European polecat]]<br />(''Mustela putorius'')
! style="background:pink;" |[[European polecat]]<br />(''Mustela putorius'')
| 40
| 40
| [[File:Ilder.jpg|100px]] ||
| [[File:Ilder.jpg|100px]] ||
Line 647: Line 748:
|
|
|-
|-
!102
! style="background:pink;"|[[American beaver]]<br />(''Castor canadensis'')
! style="background:pink;" |[[American beaver]]<br />(''Castor canadensis'')
| 40
| 40
| [[File:Castor canadensis.jpg|100px]] ||
| [[File:Castor canadensis.jpg|100px]] ||
Line 653: Line 755:
|
|
|-
|-
!103
! style="background:lightgreen;"|[[Peanut]]<br />(''Arachis hypogaea'')
! style="background:lightgreen;" |[[Peanut]]<br />(''Arachis hypogaea'')
| 40
| 40
| [[File:Arachis-hypogaea-(peanuts).jpg|100px]] || [[File:Karyotype of cultivated peanut (Arachis hypogaea).png|150px]]
| [[File:Arachis-hypogaea-(peanuts).jpg|100px]] || [[File:Karyotype of cultivated peanut (Arachis hypogaea).png|150px]]
Line 659: Line 762:
|<ref name="pmid15729391">{{cite journal | vauthors = Milla SR, Isleib TG, Stalker HT | title = Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers | journal = Genome | volume = 48 | issue = 1 | pages = 1–11 | date = February 2005 | pmid = 15729391 | doi = 10.1139/g04-089 }}</ref>
|<ref name="pmid15729391">{{cite journal | vauthors = Milla SR, Isleib TG, Stalker HT | title = Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers | journal = Genome | volume = 48 | issue = 1 | pages = 1–11 | date = February 2005 | pmid = 15729391 | doi = 10.1139/g04-089 }}</ref>
|-
|-
!104
! style="background:pink;"|[[Wolverine]]<br />(''Gulo gulo'')
! style="background:pink;" |[[Wolverine]]<br />(''Gulo gulo'')
| 42
| 42
| [[File:Gulo gulo 01.jpg|100px]] ||
| [[File:Gulo gulo 01.jpg|100px]] ||
Line 665: Line 769:
|
|
|-
|-
!105
! style="background:lightgreen;"|[[Wheat]]<br />(''Triticum aestivum'')
! style="background:lightgreen;" |[[Wheat]]<br />(''Triticum aestivum'')
| 42
| 42
| [[File:Wheat (Triticum aestivum L.) at Alnarp 1.jpg|100px]] || [[File:Karyotype of wheat (Triticum aestivum).png|150px]]
| [[File:Wheat (Triticum aestivum L.) at Alnarp 1.jpg|100px]] || [[File:Karyotype of wheat (Triticum aestivum).png|150px]]
Line 671: Line 776:
|<ref name="Simmonds"/>
|<ref name="Simmonds"/>
|-
|-
!106
! style="background:pink;"|[[Rhesus monkey]]<br />(''Macaca mulatta'')
! style="background:pink;" |[[Rhesus monkey]]<br />(''Macaca mulatta'')
| 42
| 42
| [[File:Macaca mulatta in Guiyang.jpg|100px]] || [[File:Karyotype of normal male rhesus macaque (Macaca mulatta).png|150px]]
| [[File:Macaca mulatta in Guiyang.jpg|100px]] || [[File:Karyotype of normal male rhesus macaque (Macaca mulatta).png|150px]]
Line 677: Line 783:
|<ref>{{cite journal | vauthors = Moore CM, Dunn BG, McMahan CA, Lane MA, Roth GS, Ingram DK, Mattison JA | title = Effects of calorie restriction on chromosomal stability in rhesus monkeys (Macaca mulatta) | journal = Age | volume = 29 | issue = 1 | pages = 15–28 | date = March 2007 | pmid = 19424827 | pmc = 2267682 | doi = 10.1007/s11357-006-9016-6 }}</ref>
|<ref>{{cite journal | vauthors = Moore CM, Dunn BG, McMahan CA, Lane MA, Roth GS, Ingram DK, Mattison JA | title = Effects of calorie restriction on chromosomal stability in rhesus monkeys (Macaca mulatta) | journal = Age | volume = 29 | issue = 1 | pages = 15–28 | date = March 2007 | pmid = 19424827 | pmc = 2267682 | doi = 10.1007/s11357-006-9016-6 }}</ref>
|-
|-
!107
! style="background:pink;"|[[Rat]]<br />(''Rattus norvegicus'')
! style="background:pink;" |[[Rat]]<br />(''Rattus norvegicus'')
| 42
| 42
| [[File:Rattus norvegicus 1.jpg|100px]] || [[File:Karyogram of normal rat.png|150px]]
| [[File:Rattus norvegicus 1.jpg|100px]] || [[File:Karyogram of normal rat.png|150px]]
Line 683: Line 790:
|<ref>{{cite web|url=https://www.ncbi.nlm.nih.gov/assembly/GCF_000001895.5|title=Rnor_6.0 - Assembly - NCBI|website=www.ncbi.nlm.nih.gov}}</ref>
|<ref>{{cite web|url=https://www.ncbi.nlm.nih.gov/assembly/GCF_000001895.5|title=Rnor_6.0 - Assembly - NCBI|website=www.ncbi.nlm.nih.gov}}</ref>
|-
|-
!108
! style="background:lightgreen;"|[[Oats]]<br />(''Avena sativa'')
! style="background:lightgreen;" |[[Oats]]<br />(''Avena sativa'')
| 42
| 42
| [[File:Avena sativa 002.JPG|100px]] || [[File:Karyotype of hexaploid common wild oat (Avena fatua).png|150px]]
| [[File:Avena sativa 002.JPG|100px]] || [[File:Karyotype of hexaploid common wild oat (Avena fatua).png|150px]]
Line 689: Line 797:
|<ref name="Simmonds"/>
|<ref name="Simmonds"/>
|-
|-
!109
! style="background:pink;"|[[Giant panda]]<br />(''Ailuropoda melanoleuca'')
! style="background:pink;" |[[Giant panda]]<br />(''Ailuropoda melanoleuca'')
| 42
| 42
| [[File:Giant Panda 2004-03-2.jpg|100px]] ||
| [[File:Giant Panda 2004-03-2.jpg|100px]] ||
Line 695: Line 804:
|
|
|-
|-
!110
! style="background:pink;"|[[Fossa (animal)|Fossa]]<br />(''Cryptoprocta ferox'')
! style="background:pink;" |[[Fossa (animal)|Fossa]]<br />(''Cryptoprocta ferox'')
| 42
| 42
| [[File:Cryptoprocta ferox.jpg|100px]] ||
| [[File:Cryptoprocta ferox.jpg|100px]] ||
Line 701: Line 811:
|
|
|-
|-
!111
! style="background:pink;"|[[European rabbit]]<br />(''Oryctolagus cuniculus'')
! style="background:pink;" |[[European rabbit]]<br />(''Oryctolagus cuniculus'')
| 44
| 44
| [[File:Oryctolagus cuniculus Tasmania 2.jpg|100px]] || [[File:Karyotype of Rabbit (Oryctolagus cuniculus).png|150px]]
| [[File:Oryctolagus cuniculus Tasmania 2.jpg|100px]] || [[File:Karyotype of Rabbit (Oryctolagus cuniculus).png|150px]]
Line 707: Line 818:
|
|
|-
|-
!112
! style="background:pink;"|[[Eurasian badger]]<br />(''Meles meles'')
! style="background:pink;" |[[Eurasian badger]]<br />(''Meles meles'')
| 44
| 44
| [[File:Badger-badger.jpg|100px]] ||
| [[File:Badger-badger.jpg|100px]] ||
Line 713: Line 825:
|
|
|-
|-
!113
! style="background:pink;"|[[Moon jellyfish]]<br />(''Aurelia aurita'')
! style="background:pink;" |[[Moon jellyfish]]<br />(''Aurelia aurita'')
| 44
| 44
| [[File:Moon jellyfish at Gota Sagher.JPG|100px]] ||
| [[File:Moon jellyfish at Gota Sagher.JPG|100px]] ||
Line 719: Line 832:
|<ref>{{cite journal| vauthors = Diupotex-Chong ME, Ocaña-Luna A, Sánchez-Ramírez M |title=Chromosome analysis of Linné, 1758 (Scyphozoa: Ulmaridae), southern Gulf of Mexico|journal=Marine Biology Research|date=July 2009|volume=5|issue=4|pages=399–403|doi=10.1080/17451000802534907|s2cid=84514554}}</ref>
|<ref>{{cite journal| vauthors = Diupotex-Chong ME, Ocaña-Luna A, Sánchez-Ramírez M |title=Chromosome analysis of Linné, 1758 (Scyphozoa: Ulmaridae), southern Gulf of Mexico|journal=Marine Biology Research|date=July 2009|volume=5|issue=4|pages=399–403|doi=10.1080/17451000802534907|s2cid=84514554}}</ref>
|-
|-
!114
! style="background:pink;"|[[Dolphin]]<br />(Delphinidae)
! style="background:pink;" |[[Dolphin]]<br />(Delphinidae)
| 44
| 44
| [[File:Kentriodon BW.jpg|100px]] ||
| [[File:Kentriodon BW.jpg|100px]] ||
Line 725: Line 839:
|
|
|-
|-
!115
! style="background:lightgreen;"|[[Arabian coffee]]<br />(''Coffea arabica'')
! style="background:lightgreen;" |[[Arabian coffee]]<br />(''Coffea arabica'')
| 44
| 44
| [[File:Coffee arabica 12.10.2011 14-01-6.jpg|100px]] || [[File:Karyotype of Coffea arabica.png|150px]]
| [[File:Coffee arabica 12.10.2011 14-01-6.jpg|100px]] || [[File:Karyotype of Coffea arabica.png|150px]]
| Out of the 103 species in the genus ''[[Coffea]]'', arabica coffee is the only tetraploid species (2n = 4x = 44), the remaining species being diploid with 2n = 2x = 22.<ref name="pmid22701376">{{cite journal | vauthors = Geleta M, Herrera I, Monzón A, Bryngelsson T | title = Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers | journal = TheScientificWorldJournal | volume = 2012 | page = 939820 | year = 2012 | pmid = 22701376 | pmc = 3373144 | doi = 10.1100/2012/939820 }}</ref>
| Out of the 103 species in the genus ''[[Coffea]]'', arabica coffee is the only tetraploid species (2n = 4x = 44), the remaining species being diploid with 2n = 2x = 22.<ref name="pmid22701376">{{cite journal | vauthors = Geleta M, Herrera I, Monzón A, Bryngelsson T | title = Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers | journal = TheScientificWorldJournal | volume = 2012 | page = 939820 | year = 2012 | pmid = 22701376 | pmc = 3373144 | doi = 10.1100/2012/939820 | doi-access = free }}</ref>
|
|
|-
|-
!116
! style="background:pink;"|[[Reeves's muntjac]]<br />(''Muntiacus reevesi'')
! style="background:pink;" |[[Reeves's muntjac]]<br />(''Muntiacus reevesi'')
| 46
| 46
| [[File:Formosan Reeve's muntjac.jpg|100px]] ||
| [[File:Formosan Reeve's muntjac.jpg|100px]] ||
Line 737: Line 853:
|
|
|-
|-
!117
! style="background:pink;"|[[Human]]<br />(''Homo sapiens'')
! style="background:pink;" |[[Human]]<br />(''Homo sapiens'')
| 46
| 46
| [[File:Akha cropped hires.JPG|100px]] || [[File:Human male karyotpe high resolution.jpg|150px]]
| [[File:Akha cropped hires.JPG|100px]] || [[File:Human male karyotpe high resolution.jpg|150px]]
Line 748: Line 865:
}}</ref>
}}</ref>
|-
|-
!118
! style="background:pink;"|'''[[Nilgai]] <br /> ('''Boselaphus tragocamelus''')
! style="background:lightgreen;" |[[Olive]]
'''''(Olea Europaea)'''''
|46
|[[File:Olivesfromjordan.jpg|100px]]
|
|
|
|-
!119
! style="background:pink;" |'''[[Nilgai]]''' <br /> ('''Boselaphus tragocamelus''')
|46
|46
|[[File:Nilgais fighting, Lakeshwari, Gwalior district, India.jpg|156x156px]]
|[[File:Nilgais fighting, Lakeshwari, Gwalior district, India.jpg|156x156px]]
Line 755: Line 882:
|<ref>{{Cite journal|last1=Gallagher|first1=D. S.|last2=Davis|first2=S. K.|last3=De Donato|first3=M.|last4=Burzlaff|first4=J. D.|last5=Womack|first5=J. E.|last6=Taylor|first6=J. F.|last7=Kumamoto|first7=A. T.|date=November 1998|title=A karyotypic analysis of nilgai, Boselaphus tragocamelus (Artiodactyla: Bovidae)|url=https://pubmed.ncbi.nlm.nih.gov/9886771/|journal=Chromosome Research|volume=6|issue=7|pages=505–513|doi=10.1023/a:1009268917856|issn=0967-3849|pmid=9886771|s2cid=21120780}}</ref>
|<ref>{{Cite journal|last1=Gallagher|first1=D. S.|last2=Davis|first2=S. K.|last3=De Donato|first3=M.|last4=Burzlaff|first4=J. D.|last5=Womack|first5=J. E.|last6=Taylor|first6=J. F.|last7=Kumamoto|first7=A. T.|date=November 1998|title=A karyotypic analysis of nilgai, Boselaphus tragocamelus (Artiodactyla: Bovidae)|url=https://pubmed.ncbi.nlm.nih.gov/9886771/|journal=Chromosome Research|volume=6|issue=7|pages=505–513|doi=10.1023/a:1009268917856|issn=0967-3849|pmid=9886771|s2cid=21120780}}</ref>
|-
|-
!120
! style="background:pink;"|''[[Parhyale hawaiensis]]''
! style="background:pink;" |''[[Parhyale hawaiensis]]''
| 46
| 46
| [[File:Parhyale hawaiensis - adult female.png|100px]] || [[File:Parhyale hawaiensis - karyotype.png|150px]]
| [[File:Parhyale hawaiensis - adult female.png|100px]] || [[File:Parhyale hawaiensis - karyotype.png|150px]]
|
|
|<ref name="pmid27849518">{{cite journal | vauthors = Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stancheva N, Sémon M, Grillo M, Bruce H, Kumar S, Siwanowicz I, Le A, Lemire A, Eisen MB, Extavour C, Browne WE, Wolff C, Averof M, Patel NH, Sarkies P, Pavlopoulos A, Aboobaker A | display-authors = 6 | title = The genome of the crustacean ''Parhyale hawaiensis,'' a model for animal development, regeneration, immunity and lignocellulose digestion | journal = eLife | volume = 5 | date = November 2016 | pmid = 27849518 | pmc = 5111886 | doi = 10.7554/eLife.20062 }}</ref>
|<ref name="pmid27849518">{{cite journal | vauthors = Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stancheva N, Sémon M, Grillo M, Bruce H, Kumar S, Siwanowicz I, Le A, Lemire A, Eisen MB, Extavour C, Browne WE, Wolff C, Averof M, Patel NH, Sarkies P, Pavlopoulos A, Aboobaker A | display-authors = 6 | title = The genome of the crustacean ''Parhyale hawaiensis,'' a model for animal development, regeneration, immunity and lignocellulose digestion | journal = eLife | volume = 5 | date = November 2016 | pmid = 27849518 | pmc = 5111886 | doi = 10.7554/eLife.20062 | doi-access = free }}</ref>
|-
|-
!121
! style="background:pink;"|[[Water buffalo]] (swamp type)<br />(''Bubalus bubalis'')
! style="background:pink;" |[[Water buffalo]] (swamp type)<br />(''Bubalus bubalis'')
| 48
| 48
| [[File:Water buffaloes bathing at sunset.jpg|100px]]||
| ||
|
|
|
|
|-
|-
!122
! style="background:lightgreen;"|[[Tobacco]]<br />(''[[Nicotiana tabacum]]'')
! style="background:lightgreen;" |[[Tobacco]]<br />(''[[Nicotiana tabacum]]'')
| 48
| 48
| [[File:Nicotiana Tobacco Plants 1909px.jpg|100px]] || [[File:Karyotype of Tobacco (Nicotiana tabacum).png|150px]]
| [[File:Nicotiana Tobacco Plants 1909px.jpg|100px]] || [[File:Karyotype of Tobacco (Nicotiana tabacum).png|150px]]
Line 773: Line 903:
|<ref name="pmid24807620">{{cite journal | vauthors = Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV | display-authors = 6 | title = The tobacco genome sequence and its comparison with those of tomato and potato | journal = Nature Communications | volume = 5 | page = 3833 | date = May 2014 | pmid = 24807620 | pmc = 4024737 | doi = 10.1038/ncomms4833 | bibcode = 2014NatCo...5.3833S }}</ref>
|<ref name="pmid24807620">{{cite journal | vauthors = Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV | display-authors = 6 | title = The tobacco genome sequence and its comparison with those of tomato and potato | journal = Nature Communications | volume = 5 | page = 3833 | date = May 2014 | pmid = 24807620 | pmc = 4024737 | doi = 10.1038/ncomms4833 | bibcode = 2014NatCo...5.3833S }}</ref>
|-
|-
!123
! style="background:lightgreen;"|[[Potato]]<br />(''Solanum tuberosum'')
! style="background:lightgreen;" |[[Potato]]<br />(''Solanum tuberosum'')
| 48
| 48
| [[File:Solanum tuberosum 02.jpg|100px]] || [[File:Karyotype of Potato (Solanum tuberosum).png|150px]]
| [[File:Solanum tuberosum 02.jpg|100px]] || [[File:Karyotype of Potato (Solanum tuberosum).png|150px]]
Line 779: Line 910:
|<ref name="pmid25931978">{{cite journal | vauthors = Machida-Hirano R | title = Diversity of potato genetic resources | journal = Breeding Science | volume = 65 | issue = 1 | pages = 26–40 | date = March 2015 | pmid = 25931978 | pmc = 4374561 | doi = 10.1270/jsbbs.65.26 }}</ref>
|<ref name="pmid25931978">{{cite journal | vauthors = Machida-Hirano R | title = Diversity of potato genetic resources | journal = Breeding Science | volume = 65 | issue = 1 | pages = 26–40 | date = March 2015 | pmid = 25931978 | pmc = 4374561 | doi = 10.1270/jsbbs.65.26 }}</ref>
|-
|-
!124
! style="background:pink;"|[[Orangutan]]<br />(''Pongo'')
! style="background:pink;" |[[Orangutan]]<br />(''Pongo'')
| 48
| 48
| [[File:Orang Utan, Semenggok Forest Reserve, Sarawak, Borneo, Malaysia.JPG|100px]] || [[File:Karyotype of Orangutan (Pongo).png|150px]]
| [[File:Orang Utan, Semenggok Forest Reserve, Sarawak, Borneo, Malaysia.JPG|100px]] || [[File:Karyotype of Orangutan (Pongo).png|150px]]
Line 785: Line 917:
|
|
|-
|-
!125
! style="background:pink;"|[[Hare]]<br />(''Lepus'')
! style="background:pink;" |[[Hare]]<br />(''Lepus'')
| 48
| 48
| [[File:Polarhase 1 1997-08-04.jpg|100px]] ||
| [[File:Polarhase 1 1997-08-04.jpg|100px]] ||
Line 791: Line 924:
|<ref>{{cite journal | vauthors = Robinson TJ, Yang F, Harrison WR | title = Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha) | journal = Cytogenetic and Genome Research | volume = 96 | issue = 1–4 | pages = 223–7 | year = 2002 | pmid = 12438803 | doi = 10.1159/000063034 | s2cid = 19327437 }}</ref><ref>{{Cite book |url=http://wildlife1.wildlifeinformation.org/s/00Ref/BooksContents/b605.htm |title=Rabbits, Hares and Pikas. Status Survey and Conservation Action Plan |section=4.W4 |pages=61–94 |url-status=dead |archive-url=https://web.archive.org/web/20110505143212/http://wildlife1.wildlifeinformation.org/S/00Ref/BooksContents/b605.htm |archive-date=2011-05-05}}</ref>
|<ref>{{cite journal | vauthors = Robinson TJ, Yang F, Harrison WR | title = Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha) | journal = Cytogenetic and Genome Research | volume = 96 | issue = 1–4 | pages = 223–7 | year = 2002 | pmid = 12438803 | doi = 10.1159/000063034 | s2cid = 19327437 }}</ref><ref>{{Cite book |url=http://wildlife1.wildlifeinformation.org/s/00Ref/BooksContents/b605.htm |title=Rabbits, Hares and Pikas. Status Survey and Conservation Action Plan |section=4.W4 |pages=61–94 |url-status=dead |archive-url=https://web.archive.org/web/20110505143212/http://wildlife1.wildlifeinformation.org/S/00Ref/BooksContents/b605.htm |archive-date=2011-05-05}}</ref>
|-
|-
!126
! style="background:pink;"|[[Gorilla]]<br />(''Gorilla'')
! style="background:pink;" |[[Gorilla]]<br />(''Gorilla'')
| 48
| 48
| [[File:Gorillas in Uganda-1, by Fiver Löcker.jpg|100px]] ||
| [[File:Gorillas in Uganda-1, by Fiver Löcker.jpg|100px]] ||
Line 797: Line 931:
|
|
|-
|-
!127
! style="background:pink;"|[[Deer mouse]]<br />(''Peromyscus maniculatus'')
! style="background:pink;" |[[Deer mouse]]<br />(''Peromyscus maniculatus'')
| 48
| 48
| [[File:Peromyscus maniculatus.jpg|100px]] ||
| [[File:Peromyscus maniculatus.jpg|100px]] ||
Line 803: Line 938:
|
|
|-
|-
!128
! style="background:pink;"|[[Chimpanzee]]<br />(''Pan troglodytes'')
! style="background:pink;" |[[Chimpanzee]]<br />(''Pan troglodytes'')
| 48
| 48
| [[File:Lightmatter chimp.jpg|100px]] || [[File:Karyotype of chimpanzee (Pan troglodytes).png|150px]]
| [[File:Lightmatter chimp.jpg|100px]] || [[File:Karyotype of chimpanzee (Pan troglodytes).png|150px]]
Line 809: Line 945:
|<ref>{{cite journal | vauthors = Young WJ, Merz T, Ferguson-Smith MA, Johnston AW | title = Chromosome number of the chimpanzee, Pan troglodytes | journal = Science | volume = 131 | issue = 3414 | pages = 1672–3 | date = June 1960 | pmid = 13846659 | doi = 10.1126/science.131.3414.1672 | s2cid = 36235641 | bibcode = 1960Sci...131.1672Y }}</ref>
|<ref>{{cite journal | vauthors = Young WJ, Merz T, Ferguson-Smith MA, Johnston AW | title = Chromosome number of the chimpanzee, Pan troglodytes | journal = Science | volume = 131 | issue = 3414 | pages = 1672–3 | date = June 1960 | pmid = 13846659 | doi = 10.1126/science.131.3414.1672 | s2cid = 36235641 | bibcode = 1960Sci...131.1672Y }}</ref>
|-
|-
!129
! style="background:pink;"|[[Eurasian beaver]]<br />(''Castor fiber'')
! style="background:pink;" |[[Eurasian beaver]]<br />(''Castor fiber'')
| 48
| 48
| [[File:Beaver pho34.jpg|100px]] ||
| [[File:Beaver pho34.jpg|100px]] ||
Line 815: Line 952:
|
|
|-
|-
!130
! style="background:pink;"|[[Zebrafish]]<br />(''Danio rerio'')
! style="background:pink;" |[[Zebrafish]]<br />(''Danio rerio'')
| 50
| 50
| [[File:Zebrafisch.jpg|100px]] || [[File:Karyotype of zebrafish (Danio rerio).png|150px]]
| [[File:Zebrafisch.jpg|100px]] || [[File:Karyotype of zebrafish (Danio rerio).png|150px]]
Line 821: Line 959:
|<ref>{{cite journal | vauthors = Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS | display-authors = 6 | title = Zebrafish comparative genomics and the origins of vertebrate chromosomes | journal = Genome Research | volume = 10 | issue = 12 | pages = 1890–902 | date = December 2000 | pmid = 11116085 | doi = 10.1101/gr.164800 | doi-access = free }}</ref>
|<ref>{{cite journal | vauthors = Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS | display-authors = 6 | title = Zebrafish comparative genomics and the origins of vertebrate chromosomes | journal = Genome Research | volume = 10 | issue = 12 | pages = 1890–902 | date = December 2000 | pmid = 11116085 | doi = 10.1101/gr.164800 | doi-access = free }}</ref>
|-
|-
!131
! style="background:pink;"|Woodland hedgehogs<br />''[[Erinaceus]]''
! style="background:pink;" |Woodland hedgehogs<br />''[[Erinaceus]]''
| 48
| 48
| [[File:Erinaceus europeaus (DarkAn9el).jpg|100px]] ||
| [[File:Erinaceus europeaus (DarkAn9el).jpg|100px]] ||
Line 828: Line 967:
author1=Anna Grzesiakowska|author2=Przemysław Baran,2 |author3=Marta Kuchta-Gładysz|author4=Olga Szeleszczuk1|journal=Journal of Veterinary Research|year=2019|volume=63|issue=3|pages=353–358|doi=10.2478/jvetres-2019-0041|pmid=31572815|pmc=6749745}}</ref>
author1=Anna Grzesiakowska|author2=Przemysław Baran,2 |author3=Marta Kuchta-Gładysz|author4=Olga Szeleszczuk1|journal=Journal of Veterinary Research|year=2019|volume=63|issue=3|pages=353–358|doi=10.2478/jvetres-2019-0041|pmid=31572815|pmc=6749745}}</ref>
|-
|-
!132
! style="background:pink;"|[[Atelerix|African hedgehogs]]<br />''[[Atelerix]]''
! style="background:pink;" |[[Atelerix|African hedgehogs]]<br />''[[Atelerix]]''
| 48
| 48
| [[File:Igel01.jpg|100px]] ||
| [[File:Igel01.jpg|100px]] ||
Line 835: Line 975:
author1=Anna Grzesiakowska|author2=Przemysław Baran|author3=Marta Kuchta-Gładysz|author4=Olga Szeleszczuk1|journal=Journal of Veterinary Research|year=2019|volume=63|issue=3|pages=353–358|doi=10.2478/jvetres-2019-0041|pmid=31572815|pmc=6749745}}</ref>
author1=Anna Grzesiakowska|author2=Przemysław Baran|author3=Marta Kuchta-Gładysz|author4=Olga Szeleszczuk1|journal=Journal of Veterinary Research|year=2019|volume=63|issue=3|pages=353–358|doi=10.2478/jvetres-2019-0041|pmid=31572815|pmc=6749745}}</ref>
|-
|-
!133
! style="background:pink;"|[[Water buffalo]] (Riverine type)<br />(''Bubalus bubalis'')
! style="background:pink;" |[[Water buffalo]] (Riverine type)<br />(''Bubalus bubalis'')
| 50
| 50
| [[File:Water buffaloes in Wuyishan Wufu 2012.08.24 15-46-30.jpg|100px]] || [[File:Karyotype of female Nili Ravi buffalo.png|150px]]
| [[File:Water buffaloes in Wuyishan Wufu 2012.08.24 15-46-30.jpg|100px]] || [[File:Karyotype of female Nili Ravi buffalo.png|150px]]
Line 841: Line 982:
|
|
|-
|-
!134
! style="background:pink;"|[[Striped skunk]]<br />(''Mephitis mephitis'')
! style="background:pink;" |[[Striped skunk]]<br />(''Mephitis mephitis'')
| 50
| 50
| [[File:Striped Skunk (Mephitis mephitis) DSC 0030.jpg|100px]] ||
| [[File:Striped Skunk (Mephitis mephitis) DSC 0030.jpg|100px]] ||
Line 847: Line 989:
|
|
|-
|-
!135
! style="background:lightgreen;"|[[Pineapple]]<br />(''Ananas comosus'')
! style="background:lightgreen;" |[[Pineapple]]<br />(''Ananas comosus'')
| 50
| 50
| [[File:Pineapple victoria dsc07770.jpg|100px]] ||
| [[File:Pineapple victoria dsc07770.jpg|100px]] ||
Line 853: Line 996:
|<ref name="Simmonds"/>
|<ref name="Simmonds"/>
|-
|-
!136
! style="background:pink;"|[[Kit fox]]<br />(''Vulpes macrotis'')
! style="background:pink;" |[[Kit fox]]<br />(''Vulpes macrotis'')
| 50
| 50
| [[File:Vulpes macrotis mutica with pups.jpg|100px]] ||
| [[File:Vulpes macrotis mutica with pups.jpg|100px]] ||
Line 859: Line 1,003:
|
|
|-
|-
!137
! style="background:pink;"|[[Spectacled bear]]<br />(''Tremarctos ornatus'')
! style="background:pink;" |[[Spectacled bear]]<br />(''Tremarctos ornatus'')
| 52
| 52
| [[File:Urso-de-óculos no Zoológico de Sorocaba.JPG|100px]] ||
| [[File:Urso-de-óculos no Zoológico de Sorocaba.JPG|100px]] ||
Line 865: Line 1,010:
|
|
|-
|-
!138
! style="background:pink;"|[[Platypus]]<br />(''Ornithorhynchus anatinus'')
! style="background:pink;" |[[Platypus]]<br />(''Ornithorhynchus anatinus'')
| 52
| 52
| [[File:Platypus BrokenRiver QLD Australia.jpg|100px]] || [[File:Karyotype of male platypus (Ornithorhynchus anatinus).png|150px]]
| [[File:Platypus BrokenRiver QLD Australia.jpg|100px]] || [[File:Karyotype of male platypus (Ornithorhynchus anatinus).png|150px]]
Line 871: Line 1,017:
|<ref name="NHGRI">{{cite journal | vauthors = Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, Belov K, Miller W, Clarke L, Chinwalla AT, Yang SP, Heger A, Locke DP, Miethke P, Waters PD, Veyrunes F, Fulton L, Fulton B, Graves T, Wallis J, Puente XS, López-Otín C, Ordóñez GR, Eichler EE, Chen L, Cheng Z, Deakin JE, Alsop A, Thompson K, Kirby P, Papenfuss AT, Wakefield MJ, Olender T, Lancet D, Huttley GA, Smit AF, Pask A, Temple-Smith P, Batzer MA, Walker JA, Konkel MK, Harris RS, Whittington CM, Wong ES, Gemmell NJ, Buschiazzo E, Vargas Jentzsch IM, Merkel A, Schmitz J, Zemann A, Churakov G, Kriegs JO, Brosius J, Murchison EP, Sachidanandam R, Smith C, Hannon GJ, Tsend-Ayush E, McMillan D, Attenborough R, Rens W, Ferguson-Smith M, Lefèvre CM, Sharp JA, Nicholas KR, Ray DA, Kube M, Reinhardt R, Pringle TH, Taylor J, Jones RC, Nixon B, Dacheux JL, Niwa H, Sekita Y, Huang X, Stark A, Kheradpour P, Kellis M, Flicek P, Chen Y, Webber C, Hardison R, Nelson J, Hallsworth-Pepin K, Delehaunty K, Markovic C, Minx P, Feng Y, Kremitzki C, Mitreva M, Glasscock J, Wylie T, Wohldmann P, Thiru P, Nhan MN, Pohl CS, Smith SM, Hou S, Nefedov M, de Jong PJ, Renfree MB, Mardis ER, Wilson RK | display-authors = 6 | title = Genome analysis of the platypus reveals unique signatures of evolution | journal = Nature | volume = 453 | issue = 7192 | pages = 175–83 | date = May 2008 | pmid = 18464734 | pmc = 2803040 | doi = 10.1038/nature06936 | bibcode = 2008Natur.453..175W }}</ref>
|<ref name="NHGRI">{{cite journal | vauthors = Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, Belov K, Miller W, Clarke L, Chinwalla AT, Yang SP, Heger A, Locke DP, Miethke P, Waters PD, Veyrunes F, Fulton L, Fulton B, Graves T, Wallis J, Puente XS, López-Otín C, Ordóñez GR, Eichler EE, Chen L, Cheng Z, Deakin JE, Alsop A, Thompson K, Kirby P, Papenfuss AT, Wakefield MJ, Olender T, Lancet D, Huttley GA, Smit AF, Pask A, Temple-Smith P, Batzer MA, Walker JA, Konkel MK, Harris RS, Whittington CM, Wong ES, Gemmell NJ, Buschiazzo E, Vargas Jentzsch IM, Merkel A, Schmitz J, Zemann A, Churakov G, Kriegs JO, Brosius J, Murchison EP, Sachidanandam R, Smith C, Hannon GJ, Tsend-Ayush E, McMillan D, Attenborough R, Rens W, Ferguson-Smith M, Lefèvre CM, Sharp JA, Nicholas KR, Ray DA, Kube M, Reinhardt R, Pringle TH, Taylor J, Jones RC, Nixon B, Dacheux JL, Niwa H, Sekita Y, Huang X, Stark A, Kheradpour P, Kellis M, Flicek P, Chen Y, Webber C, Hardison R, Nelson J, Hallsworth-Pepin K, Delehaunty K, Markovic C, Minx P, Feng Y, Kremitzki C, Mitreva M, Glasscock J, Wylie T, Wohldmann P, Thiru P, Nhan MN, Pohl CS, Smith SM, Hou S, Nefedov M, de Jong PJ, Renfree MB, Mardis ER, Wilson RK | display-authors = 6 | title = Genome analysis of the platypus reveals unique signatures of evolution | journal = Nature | volume = 453 | issue = 7192 | pages = 175–83 | date = May 2008 | pmid = 18464734 | pmc = 2803040 | doi = 10.1038/nature06936 | bibcode = 2008Natur.453..175W }}</ref>
|-
|-
!139
! style="background:lightgreen;"|[[Upland cotton]]<br />(''Gossypium hirsutum'')
! style="background:lightgreen;" |[[Upland cotton]]<br />(''Gossypium hirsutum'')
| 52
| 52
| [[File:CottonPlant.JPG|100px]] || [[File:Karyotype of Cotton (Gossypium hirsutum).png|150px]]
| [[File:CottonPlant.JPG|100px]] || [[File:Karyotype of Cotton (Gossypium hirsutum).png|150px]]
Line 877: Line 1,024:
|<ref name="pmid26275937">{{cite journal | vauthors = Chen H, Khan MK, Zhou Z, Wang X, Cai X, Ilyas MK, Wang C, Wang Y, Li Y, Liu F, Wang K | display-authors = 6 | title = A high-density SSR genetic map constructed from a F2 population of Gossypium hirsutum and Gossypium darwinii | journal = Gene | volume = 574 | issue = 2 | pages = 273–86 | date = December 2015 | pmid = 26275937 | doi = 10.1016/j.gene.2015.08.022 | url = https://www.researchgate.net/publication/281005213 }}</ref>
|<ref name="pmid26275937">{{cite journal | vauthors = Chen H, Khan MK, Zhou Z, Wang X, Cai X, Ilyas MK, Wang C, Wang Y, Li Y, Liu F, Wang K | display-authors = 6 | title = A high-density SSR genetic map constructed from a F2 population of Gossypium hirsutum and Gossypium darwinii | journal = Gene | volume = 574 | issue = 2 | pages = 273–86 | date = December 2015 | pmid = 26275937 | doi = 10.1016/j.gene.2015.08.022 | url = https://www.researchgate.net/publication/281005213 }}</ref>
|-
|-
!140
! style="background:pink;"|[[Sheep]]<br />(''Ovis aries'')
! style="background:pink;" |[[Sheep]]<br />(''Ovis aries'')
| 54
| 54
| [[File:Sheep norwegian dala.jpg|100px]] || [[File:Karyotype of sheep (Ovis aries).png|150px]]
| [[File:Sheep norwegian dala.jpg|100px]] || [[File:Karyotype of sheep (Ovis aries).png|150px]]
Line 883: Line 1,031:
|
|
|-
|-
!141
! style="background:pink;"|[[Hyrax]]<br />(''Hyracoidea'')
! style="background:pink;" |[[Hyrax]]<br />(''Hyracoidea'')
| {{sort|54|54}}
| {{sort|54|54}}
| [[File:Procavia-capensis-Frontal.JPG|100px]] || [[File:Karyotype of rock hyrax (Procavia capensis).png|150px]]
| [[File:Procavia-capensis-Frontal.JPG|100px]] || [[File:Karyotype of rock hyrax (Procavia capensis).png|150px]]
Line 889: Line 1,038:
|<ref name=OBrien>{{Cite book| vauthors = O'Brien SJ, Meninger JC, Nash WG |title=Atlas of Mammalian Chromosomes|page=78|publisher=John Wiley & sons|year=2006|isbn=978-0-471-35015-6}}</ref>
|<ref name=OBrien>{{Cite book| vauthors = O'Brien SJ, Meninger JC, Nash WG |title=Atlas of Mammalian Chromosomes|page=78|publisher=John Wiley & sons|year=2006|isbn=978-0-471-35015-6}}</ref>
|-
|-
!142
! style="background:pink;"|[[Raccoon dog]]<br />(''Nyctereutes procyonoides procyonoides'')
! style="background:pink;" |[[Raccoon dog]]<br />(''Nyctereutes procyonoides procyonoides'')
| 54
| 54
| [[File:Nyctereutes procyonoides 4 (Piotr Kuczynski).jpg|100px]] || [[File:Karyotype of Chinese raccoon dog (Nyctereutes procyonoides procyonoides).png|150px]]
| [[File:Nyctereutes procyonoides 4 (Piotr Kuczynski).jpg|100px]] || [[File:Karyotype of Chinese raccoon dog (Nyctereutes procyonoides procyonoides).png|150px]]
| This number is for [[Chinese raccoon dog]] (''N. p. procyonoides''), 2n=54+B(0–4). On the other hand, [[Japanese raccoon dog]] (''N. p. viverrinus'') with 2n=38+B(0–8). Here, B represents [[B chromosome]] and its variation in the number between individuals.<ref name="MÅKINEN"/><ref name="Ostrander2012">{{cite book| vauthors = Ostrander EA |title=Genetics of the Dog|url=https://books.google.com/books?id=R-C3D2QBGsgC&pg=PA250|date=1 January 2012|publisher=CABI|isbn=978-1-84593-941-0|pages=250–}}</ref>
| This number is for [[common raccoon dog]] (''N. p. procyonoides''), 2n=54+B(0–4). On the other hand, [[Japanese raccoon dog]] (''N. p. viverrinus'') with 2n=38+B(0–8). Here, B represents [[B chromosome]] and its variation in the number between individuals.<ref name="MÅKINEN"/><ref name="Ostrander2012">{{cite book| vauthors = Ostrander EA |title=Genetics of the Dog|url=https://books.google.com/books?id=R-C3D2QBGsgC&pg=PA250|date=1 January 2012|publisher=CABI|isbn=978-1-84593-941-0|pages=250–}}</ref>
|<ref name="MÅKINEN">{{cite journal | vauthors = Mäkinen A, Kuokkanen MT, Valtonen M | title = A chromosome-banding study in the Finnish and the Japanese raccoon dog | journal = Hereditas | volume = 105 | issue = 1 | pages = 97–105 | year = 1986 | pmid = 3793521 | doi = 10.1111/j.1601-5223.1986.tb00647.x | doi-access = free }}</ref>
|<ref name="MÅKINEN">{{cite journal | vauthors = Mäkinen A, Kuokkanen MT, Valtonen M | title = A chromosome-banding study in the Finnish and the Japanese raccoon dog | journal = Hereditas | volume = 105 | issue = 1 | pages = 97–105 | year = 1986 | pmid = 3793521 | doi = 10.1111/j.1601-5223.1986.tb00647.x | doi-access = free }}</ref>
|-
|-
!143
! style="background:pink;"|[[Capuchin monkey]]<br />(Cebinae)
! style="background:pink;" |[[Capuchin monkey]]<br />(Cebinae)
| 54
| 54
| [[File:Cebus capucinus, Costa Rica.JPG|100px]] ||
| [[File:Cebus capucinus, Costa Rica.JPG|100px]] ||
Line 901: Line 1,052:
|<ref name = "CAP">{{Cite journal|doi=10.1590/S1413-95962002000600010 |title=Analysis of some normal parameters of the spermiogram of captive capuchin monkeys (''Cebus apella'' Linnaeus, 1758 ) |year=2002 | vauthors = Barnabe RC, Guimarães MA, Oliveira CA, Barnabe AH |journal=Brazilian Journal of Veterinary Research and Animal Science |volume=39|issue=6 |url=http://www.scielo.br/pdf/bjvras/v39n6/15850.pdf|doi-access=free }}</ref>
|<ref name = "CAP">{{Cite journal|doi=10.1590/S1413-95962002000600010 |title=Analysis of some normal parameters of the spermiogram of captive capuchin monkeys (''Cebus apella'' Linnaeus, 1758 ) |year=2002 | vauthors = Barnabe RC, Guimarães MA, Oliveira CA, Barnabe AH |journal=Brazilian Journal of Veterinary Research and Animal Science |volume=39|issue=6 |url=http://www.scielo.br/pdf/bjvras/v39n6/15850.pdf|doi-access=free }}</ref>
|-
|-
!144
! style="background:pink;"|[[Silkworm]]<br />(''Bombyx mori'')
! style="background:pink;" |[[Silkworm]]<br />(''Bombyx mori'')
| 56
| 56
| [[File:Silkworm & cocoon.jpg|100px]] || [[File:Karyotype of Silkworm (Bombyx mori).png|150px]]
| [[File:Pairedmoths.jpg|100px]]|| [[File:Karyotype of Silkworm (Bombyx mori).png|150px]]
| This is for the species mulberry silkworm, ''[[Bombyx mori|B. mori]]'' (2n=56). Probably more than 99% of the world's commercial [[silk]] today come from this species.<ref name="silk1993">Peigler, Richard S. ["Wild silks of the world." ''American Entomologist'' 39.3 (1993): 151–162. https://doi.org/10.1093/ae/39.3.151</ref> Other silk producing moths, called non-mulberry silkworms, have various chromosome numbers. (e.g. ''[[Samia cynthia]]'' with 2n=25–28,<ref name="pmid21396446">{{cite journal | vauthors = Yoshido A, Yasukochi Y, Sahara K | title = Samia cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera | journal = Insect Biochemistry and Molecular Biology | volume = 41 | issue = 6 | pages = 370–7 | date = June 2011 | pmid = 21396446 | doi = 10.1016/j.ibmb.2011.02.005 | url = https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/45607/2/IBMB41-6_370-377.pdf | hdl = 2115/45607 | s2cid = 38794541 | hdl-access = free }}</ref> ''[[Antheraea pernyi]]'' with 2n=98.<ref name="pmid16809837">{{cite journal | vauthors = Mahendran B, Ghosh SK, Kundu SC | title = Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes | journal = Journal of Genetics | volume = 85 | issue = 1 | pages = 31–8 | date = April 2006 | pmid = 16809837 | doi = 10.1007/bf02728967 | s2cid = 11733404 }}</ref>)
| This is for the species mulberry silkworm, ''[[Bombyx mori|B. mori]]'' (2n=56). Probably more than 99% of the world's commercial [[silk]] today come from this species.<ref name="silk1993">{{Cite journal |last=Peigler |first=Richard S. |date=1993 |title=Wild Silks of the World |url=https://academic.oup.com/ae/article-lookup/doi/10.1093/ae/39.3.151 |journal=American Entomologist |language=en |volume=39 |issue=3 |pages=151–162 |doi=10.1093/ae/39.3.151}}</ref> Other silk producing moths, called non-mulberry silkworms, have various chromosome numbers. (e.g. ''[[Samia cynthia]]'' with 2n=25–28,<ref name="pmid21396446">{{cite journal | vauthors = Yoshido A, Yasukochi Y, Sahara K | title = Samia cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera | journal = Insect Biochemistry and Molecular Biology | volume = 41 | issue = 6 | pages = 370–7 | date = June 2011 | pmid = 21396446 | doi = 10.1016/j.ibmb.2011.02.005 | bibcode = 2011IBMB...41..370Y | url = https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/45607/2/IBMB41-6_370-377.pdf | hdl = 2115/45607 | s2cid = 38794541 | hdl-access = free }}</ref> ''[[Antheraea pernyi]]'' with 2n=98.<ref name="pmid16809837">{{cite journal | vauthors = Mahendran B, Ghosh SK, Kundu SC | title = Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes | journal = Journal of Genetics | volume = 85 | issue = 1 | pages = 31–8 | date = April 2006 | pmid = 16809837 | doi = 10.1007/bf02728967 | s2cid = 11733404 }}</ref>)
|<ref name="pmid15802516">{{cite journal | vauthors = Yoshido A, Bando H, Yasukochi Y, Sahara K | title = The Bombyx mori karyotype and the assignment of linkage groups | journal = Genetics | volume = 170 | issue = 2 | pages = 675–85 | date = June 2005 | pmid = 15802516 | pmc = 1450397 | doi = 10.1534/genetics.104.040352 }}</ref>
|<ref name="pmid15802516">{{cite journal | vauthors = Yoshido A, Bando H, Yasukochi Y, Sahara K | title = The Bombyx mori karyotype and the assignment of linkage groups | journal = Genetics | volume = 170 | issue = 2 | pages = 675–85 | date = June 2005 | pmid = 15802516 | pmc = 1450397 | doi = 10.1534/genetics.104.040352 }}</ref>
|-
|-
!145
! style="background:lightgreen;"|[[Strawberry]]<br />(''Fragaria'' × ''ananassa'')
! style="background:lightgreen;" |[[Strawberry]]<br />(''Fragaria'' × ''ananassa'')
| 56
| 56
| [[File:Fragaria × ananassa.JPG|100px]] || [[File:Karyotype of Strawberry (Fragaria virginiana ssp glauca).png|150px]]
| [[File:Fragaria × ananassa.JPG|100px]] || [[File:Karyotype of Strawberry (Fragaria virginiana ssp glauca).png|150px]]
|This number is [[octoploid]], main cultivated species [[Fragaria × ananassa|''Fragaria'' × ''ananassa'']] (2n = 8x = 56). In genus ''[[Fragaria]]'', basic chromosome number is seven (x = 7) and multiple levels of [[ploidy]], ranging from diploid (2n = 2x = 14) to decaploid (''[[Fragaria iturupensis|F. iturupensis]]'', 2n = 10x = 70), are known.<ref name="pmid22074487"/>
|This number is [[octoploid]], main cultivated species [[Fragaria × ananassa|''Fragaria'' × ''ananassa'']] (2n = 8x = 56). In genus ''[[Fragaria]]'', basic chromosome number is seven (x = 7) and multiple levels of [[ploidy]], ranging from diploid (2n = 2x = 14) to decaploid (''[[Fragaria iturupensis|F. iturupensis]]'', 2n = 10x = 70), are known.<ref name="pmid22074487"/>
|<ref name="pmid22074487">{{cite journal | vauthors = Liu B, Davis TM | title = Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae) | journal = BMC Plant Biology | volume = 11 | page = 157 | date = November 2011 | pmid = 22074487 | pmc = 3261831 | doi = 10.1186/1471-2229-11-157 }}</ref>
|<ref name="pmid22074487">{{cite journal | vauthors = Liu B, Davis TM | title = Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae) | journal = BMC Plant Biology | volume = 11 | page = 157 | date = November 2011 | pmid = 22074487 | pmc = 3261831 | doi = 10.1186/1471-2229-11-157 | doi-access = free }}</ref>
|-
|-
!146
! style="background:pink;"|[[Gaur]]<br />(''Bos gaurus'')
! style="background:pink;" |[[Gaur]]<br />(''Bos gaurus'')
| 56
| 56
| [[File:Bos gaurus.jpeg|100px]] ||
| [[File:Bos gaurus.jpeg|100px]] ||
Line 919: Line 1,073:
|
|
|-
|-
!147
! style="background:pink;"|[[Elephant]]<br />(''Elephantidae'')
! style="background:pink;" |[[Elephant]]<br />(''Elephantidae'')
| 56
| 56
| [[File:Elephant near ndutu.jpg|100px]] ||
| [[File:Elephant near ndutu.jpg|100px]] ||
Line 925: Line 1,080:
|
|
|-
|-
!148
! style="background:pink;"|†[[Woolly mammoth]]<br />(''Mammuthus primigenius'')
! style="background:pink;" |†[[Woolly mammoth]]<br />(''Mammuthus primigenius'')
| 58
| 58
| [[File:Mamut lanudo cropped.jpg|100px]] ||
| [[File:Mamut lanudo cropped.jpg|100px]] ||
Line 931: Line 1,087:
|
|
|-
|-
!149
! style="background:pink;"|[[Domestic yak]]<br />(''Bos grunniens'')
! style="background:pink;" |[[Domestic yak]]<br />(''Bos grunniens'')
| 60
| 60
| [[File:Bos grunniens - Syracuse Zoo.jpg|100px]] ||
| [[File:Bos grunniens - Syracuse Zoo.jpg|100px]] ||
Line 937: Line 1,094:
|
|
|-
|-
!150
! style="background:pink;"|[[Goat]]<br />(''Capra hircus'')
! style="background:pink;" |[[Goat]]<br />(''Capra hircus'')
| 60
| 60
| [[File:Hausziege 04.jpg|100px]] || [[File:Karyotype of normal male goat.png|150px]]
| [[File:Hausziege 04.jpg|100px]] || [[File:Karyotype of normal male goat.png|150px]]
Line 943: Line 1,101:
|
|
|-
|-
!151
! style="background:pink;"|[[Cattle]]<br />(''Bos taurus'')
! style="background:pink;" |[[Cattle]]<br />(''Bos taurus'')
| 60
| 60
| [[File:20100516 Vacas Vilarromarís, Oroso-8-1.jpg|100px]] || [[File:Karyotype of cattle.PNG|150px]]
| [[File:20100516 Vacas Vilarromarís, Oroso-8-1.jpg|100px]] || [[File:Karyotype of cattle.PNG|150px]]
Line 949: Line 1,108:
|
|
|-
|-
!152
! style="background:pink;"|[[American bison]]<br />(''Bison bison'')
! style="background:pink;" |[[American bison]]<br />(''Bison bison'')
| 60
| 60
| [[File:American bison k5680-1.jpg|100px]] ||
| [[File:American bison k5680-1.jpg|100px]] ||
Line 955: Line 1,115:
|
|
|-
|-
!153
! style="background:pink;"|[[Sable antelope]]<br />(''Hippotragus niger'')
! style="background:pink;" |[[Sable antelope]]<br />(''Hippotragus niger'')
| 60
| 60
| [[File:Sable antelope (Hippotragus niger) adult male.jpg|100px]] ||
| [[File:Sable antelope (Hippotragus niger) adult male.jpg|100px]] ||
Line 961: Line 1,122:
|<ref>{{cite journal |last1=Claro |first1=Françoise |last2=Hayes |first2=Hélène |last3=Cribiu |first3=Edmond Paul |title=The R- and G-Banded Karyotypes of the Sable Antelope (Hippotragus niger) |journal=Journal of Heredity |date=November 1993 |volume=84 |issue=6 |pages=481–484 |doi=10.1093/oxfordjournals.jhered.a111376 |pmid=8270772 |url=https://academic.oup.com/jhered/article/84/6/481/811674 |access-date=6 March 2021}}</ref>
|<ref>{{cite journal |last1=Claro |first1=Françoise |last2=Hayes |first2=Hélène |last3=Cribiu |first3=Edmond Paul |title=The R- and G-Banded Karyotypes of the Sable Antelope (Hippotragus niger) |journal=Journal of Heredity |date=November 1993 |volume=84 |issue=6 |pages=481–484 |doi=10.1093/oxfordjournals.jhered.a111376 |pmid=8270772 |url=https://academic.oup.com/jhered/article/84/6/481/811674 |access-date=6 March 2021}}</ref>
|-
|-
!154
! style="background:pink;"|[[Bengal fox]]<br />(''Vulpes bengalensis'')
! style="background:pink;" |[[Bengal fox]]<br />(''Vulpes bengalensis'')
| 60
| 60
| [[File:Indianfox.jpg|100px]] ||
| [[File:Indianfox.jpg|100px]] ||
Line 967: Line 1,129:
|
|
|-
|-
!155
! style="background:pink;"|[[Lymantria dispar dispar|Gypsy moth]]<br />(''Lymantria dispar dispar'')
! style="background:pink;" |[[Lymantria dispar dispar|Gypsy moth]]<br />(''Lymantria dispar dispar'')
| 62
| 62
| [[File:Lymantria dispar MHNT Fronton Male.jpg|100px]] ||
| [[File:Lymantria dispar MHNT Fronton Male.jpg|100px]] ||
Line 973: Line 1,136:
|
|
|-
|-
!156
! style="background:pink;"|[[Donkey]]<br />(''Equus asinus'')
! style="background:pink;" |[[Donkey]]<br />(''Equus asinus'')
| 62
| 62
| [[File:Donkey 1 arp 750px.jpg|100px]] ||
| [[File:Donkey 1 arp 750px.jpg|100px]] ||
Line 979: Line 1,143:
|
|
|-
|-
!157
! style="background:pink;"|[[Scarlet macaw]]<br />(''Ara macao'')
! style="background:pink;" |[[Scarlet macaw]]<br />(''Ara macao'')
| 62–64
| 62–64
| [[File:Scarlet Macaw (Ara macao) -Panama-8a.jpg|100px]] || [[File:Karyotype of Scarlet Macaw (Ara macao).png|150px]]
| [[File:Scarlet Macaw (Ara macao) -Panama-8a.jpg|100px]] || [[File:Karyotype of Scarlet Macaw (Ara macao).png|150px]]
Line 985: Line 1,150:
|<ref name="pmid23667475">{{cite journal | vauthors = Seabury CM, Dowd SE, Seabury PM, Raudsepp T, Brightsmith DJ, Liboriussen P, Halley Y, Fisher CA, Owens E, Viswanathan G, Tizard IR | display-authors = 6 | title = A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao) | journal = PLOS ONE | volume = 8 | issue = 5 | pages = e62415 | year = 2013 | pmid = 23667475 | pmc = 3648530 | doi = 10.1371/journal.pone.0062415 | bibcode = 2013PLoSO...862415S | doi-access = free }}</ref>
|<ref name="pmid23667475">{{cite journal | vauthors = Seabury CM, Dowd SE, Seabury PM, Raudsepp T, Brightsmith DJ, Liboriussen P, Halley Y, Fisher CA, Owens E, Viswanathan G, Tizard IR | display-authors = 6 | title = A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao) | journal = PLOS ONE | volume = 8 | issue = 5 | pages = e62415 | year = 2013 | pmid = 23667475 | pmc = 3648530 | doi = 10.1371/journal.pone.0062415 | bibcode = 2013PLoSO...862415S | doi-access = free }}</ref>
|-
|-
!158
! style="background:pink;"|[[Mule]]
! style="background:pink;" |[[Mule]]
| 63
| 63
| [[File:Juancito.jpg|100px]] ||
| [[File:Juancito.jpg|100px]] ||
Line 991: Line 1,157:
|
|
|-
|-
!159
! style="background:pink;"|[[Guinea pig]]<br />(''Cavia porcellus'')
! style="background:pink;" |[[Guinea pig]]<br />(''Cavia porcellus'')
| 64
| 64
| [[File:Two adult Guinea Pigs (Cavia porcellus).jpg|100px]] || [[File:G-banded karyotype of female guinea pig (Cavia porcellus).png|150px]]
| [[File:Two adult Guinea Pigs (Cavia porcellus).jpg|100px]] || [[File:G-banded karyotype of female guinea pig (Cavia porcellus).png|150px]]
Line 997: Line 1,164:
|
|
|-
|-
!160
! style="background:pink;"|[[Spotted skunk]]<br />(''Spilogale x'')
! style="background:pink;" |[[Spotted skunk]]<br />(''Spilogale x'')
| 64
| 64
| [[File:Spilogale gracilis.jpg|100px]] ||
| [[File:Spilogale gracilis.jpg|100px]] ||
Line 1,003: Line 1,171:
|
|
|-
|-
!161
! style="background:pink;"|[[Horse]]<br />(''Equus caballus'')
! style="background:pink;" |[[Horse]]<br />(''Equus caballus'')
| 64
| 64
| [[File:LaMirage body07.jpg|100px]] || [[File:Karyotype of male Marajoara Horse (Equus Caballus).png|150px]]
| [[File:LaMirage body07.jpg|100px]] || [[File:Karyotype of male Marajoara Horse (Equus Caballus).png|150px]]
Line 1,009: Line 1,178:
|
|
|-
|-
!162
! style="background:pink;"|[[Fennec fox]]<br />(''Vulpes zerda'')
! style="background:pink;" |[[Fennec fox]]<br />(''Vulpes zerda'')
| 64
| 64
| [[File:Fennec Foxes.jpg|100px]] ||
| [[File:Fennec Foxes.jpg|100px]] ||
Line 1,015: Line 1,185:
|<ref name=Canids/>
|<ref name=Canids/>
|-
|-
!163
! style="background:pink;"|[[Echidna]]<br />(Tachyglossidae)
! style="background:pink;" |[[Echidna]]<br />(Tachyglossidae)
| 63/64
| 63/64
| [[File:Ameisenigel.jpg|100px]] ||
| [[File:Ameisenigel.jpg|100px]] ||
| 63 (X<sub>1</sub>Y<sub>1</sub>X<sub>2</sub>Y<sub>2</sub>X<sub>3</sub>Y<sub>3</sub>X<sub>4</sub>Y<sub>4</sub>X<sub>5</sub>, male) and 64 (X<sub>1</sub>X<sub>1</sub>X<sub>2</sub>X<sub>2</sub>X<sub>3</sub>X<sub>3</sub>X<sub>4</sub>X<sub>4</sub>X<sub>5</sub>X<sub>5</sub>, female)<ref name = "Rensetal2007">{{cite journal | vauthors = Rens W, O'Brien PC, Grützner F, Clarke O, Graphodatskaya D, Tsend-Ayush E, Trifonov VA, Skelton H, Wallis MC, Johnston S, Veyrunes F, Graves JA, Ferguson-Smith MA | display-authors = 6 | title = The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z | journal = Genome Biology | volume = 8 | issue = 11 | pages = R243 | year = 2007 | pmid = 18021405 | pmc = 2258203 | doi = 10.1186/gb-2007-8-11-r243 }}</ref>
| 63 (X<sub>1</sub>Y<sub>1</sub>X<sub>2</sub>Y<sub>2</sub>X<sub>3</sub>Y<sub>3</sub>X<sub>4</sub>Y<sub>4</sub>X<sub>5</sub>, male) and 64 (X<sub>1</sub>X<sub>1</sub>X<sub>2</sub>X<sub>2</sub>X<sub>3</sub>X<sub>3</sub>X<sub>4</sub>X<sub>4</sub>X<sub>5</sub>X<sub>5</sub>, female)<ref name = "Rensetal2007">{{cite journal | vauthors = Rens W, O'Brien PC, Grützner F, Clarke O, Graphodatskaya D, Tsend-Ayush E, Trifonov VA, Skelton H, Wallis MC, Johnston S, Veyrunes F, Graves JA, Ferguson-Smith MA | display-authors = 6 | title = The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z | journal = Genome Biology | volume = 8 | issue = 11 | pages = R243 | year = 2007 | pmid = 18021405 | pmc = 2258203 | doi = 10.1186/gb-2007-8-11-r243 | doi-access = free }}</ref>
|
|
|-
|-
!164
! style="background:pink;"|[[Chinchilla]]<br />(''Chinchilla lanigera'')
! style="background:pink;" |[[Chinchilla]]<br />(''Chinchilla lanigera'')
| 64
| 64
| [[File:Chinchilla lanigera.jpg|100px]] ||
| [[File:Chinchilla lanigera.jpg|100px]] ||
Line 1,027: Line 1,199:
|<ref name="resources.metapress.com">{{cite web|url=https://metapress.com/|title=Metapress – Discover More|date=24 June 2016}}</ref>
|<ref name="resources.metapress.com">{{cite web|url=https://metapress.com/|title=Metapress – Discover More|date=24 June 2016}}</ref>
|-
|-
!165
! style="background:pink;"|[[Nine-banded armadillo]]<br />(''Dasypus novemcinctus'')
! style="background:pink;" |[[Nine-banded armadillo]]<br />(''Dasypus novemcinctus'')
| 64
| 64
| [[File:Nine-banded Armadillo.jpg|100px]] || [[File:Karyotype of nine-banded armadillo.png|150px]]
| [[File:Nine-banded Armadillo.jpg|100px]] || [[File:Karyotype of nine-banded armadillo.png|150px]]
|
|
|<ref name="pmid16848642">{{cite journal | vauthors = Svartman M, Stone G, Stanyon R | title = The ancestral eutherian karyotype is present in Xenarthra | journal = PLOS Genetics | volume = 2 | issue = 7 | pages = e109 | date = July 2006 | pmid = 16848642 | pmc = 1513266 | doi = 10.1371/journal.pgen.0020109 }}</ref>
|<ref name="pmid16848642">{{cite journal | vauthors = Svartman M, Stone G, Stanyon R | title = The ancestral eutherian karyotype is present in Xenarthra | journal = PLOS Genetics | volume = 2 | issue = 7 | pages = e109 | date = July 2006 | pmid = 16848642 | pmc = 1513266 | doi = 10.1371/journal.pgen.0020109 | doi-access = free }}</ref>
|-
|-
!166
! style="background:pink;"|[[Gray fox]]<br />(''Urocyon cinereoargenteus'')
! style="background:pink;" |[[Gray fox]]<br />(''Urocyon cinereoargenteus'')
| 66
| 66
| [[File:Urocyon cinereoargenteus.jpg|100px]] ||
| [[File:Urocyon cinereoargenteus.jpg|100px]] ||
Line 1,039: Line 1,213:
|<ref name=Canids/>
|<ref name=Canids/>
|-
|-
!167
! style="background:pink;"|[[Red deer]]<br />(''Cervus elaphus'')
! style="background:pink;" |[[Red deer]]<br />(''Cervus elaphus'')
| 68
| 68
| [[File:Zoo-Dortmund-IMG 5549-a.jpg|100px]] ||
| [[File:Zoo-Dortmund-IMG 5549-a.jpg|100px]] ||
Line 1,045: Line 1,220:
|
|
|-
|-
!168
! style="background:pink;"|[[Elk]] (wapiti)<br />(''Cervus canadensis'')
! style="background:pink;" |[[Elk]] (wapiti)<br />(''Cervus canadensis'')
| 68
| 68
|[[File:2007-Tule-elk-rut.jpg|100x100px]]||
|[[File:2007-Tule-elk-rut.jpg|100x100px]]||
Line 1,051: Line 1,227:
|
|
|-
|-
!169
! style="background:pink;"|[[Roadside hawk]]<br />(''Rupornis magnirostris'')
! style="background:pink;" |[[Roadside hawk]]<br />(''Rupornis magnirostris'')
| 68
| 68
| [[File:Buteo magnirostris -Goias -Brazil-8.jpg|100px]] || [[File:Karyotype of roadside hawk (Rupornis magnirostris).png|150px]]
| [[File:Buteo magnirostris -Goias -Brazil-8.jpg|100px]] || [[File:Karyotype of roadside hawk (Rupornis magnirostris).png|150px]]
Line 1,057: Line 1,234:
|<ref name="pmid23922908">{{cite journal | vauthors = de Oliveira EH, Tagliarini MM, dos Santos MS, O'Brien PC, Ferguson-Smith MA | title = Chromosome painting in three species of buteoninae: a cytogenetic signature reinforces the monophyly of South American species | journal = PLOS ONE | volume = 8 | issue = 7 | pages = e70071 | year = 2013 | pmid = 23922908 | pmc = 3724671 | doi = 10.1371/journal.pone.0070071 | bibcode = 2013PLoSO...870071D | doi-access = free }}</ref>
|<ref name="pmid23922908">{{cite journal | vauthors = de Oliveira EH, Tagliarini MM, dos Santos MS, O'Brien PC, Ferguson-Smith MA | title = Chromosome painting in three species of buteoninae: a cytogenetic signature reinforces the monophyly of South American species | journal = PLOS ONE | volume = 8 | issue = 7 | pages = e70071 | year = 2013 | pmid = 23922908 | pmc = 3724671 | doi = 10.1371/journal.pone.0070071 | bibcode = 2013PLoSO...870071D | doi-access = free }}</ref>
|-
|-
!170
! style="background:pink;"|[[White-tailed deer]]<br />(''Odocoileus virginianus'')
! style="background:pink;" |[[White-tailed deer]]<br />(''Odocoileus virginianus'')
| 70
| 70
|[[File:White-tailed deer (Odocoileus virginianus) grazing - 20050809.jpg|100x100px]]||
|[[File:White-tailed deer (Odocoileus virginianus) grazing - 20050809.jpg|100x100px]]||
Line 1,063: Line 1,241:
|
|
|-
|-
!171
! style="background:lightgreen;"|Black nightshade<br />(''[[Solanum nigrum]]'')
! style="background:lightgreen;" |Black nightshade<br />(''[[Solanum nigrum]]'')
| 72
| 72
| [[File:Solanum nigra bgiu.jpg|100px]] ||
| [[File:Solanum nigra bgiu.jpg|100px]] ||
Line 1,069: Line 1,248:
|<ref>{{cite journal | vauthors = Smith HB | title = Chromosome Counts in the Varieties of SOLANUM TUBEROSUM and Allied Wild Species | journal = Genetics | volume = 12 | issue = 1 | pages = 84–92 | date = January 1927 | doi = 10.1093/genetics/12.1.84 | pmid = 17246516 | pmc = 1200928 }}</ref>
|<ref>{{cite journal | vauthors = Smith HB | title = Chromosome Counts in the Varieties of SOLANUM TUBEROSUM and Allied Wild Species | journal = Genetics | volume = 12 | issue = 1 | pages = 84–92 | date = January 1927 | doi = 10.1093/genetics/12.1.84 | pmid = 17246516 | pmc = 1200928 }}</ref>
|-
|-
!172
! style="background:lightgreen;"|Tropical blue bamboo<br />(''[[Bambusa chungii]]'')
! style="background:lightgreen;" |Tropical blue bamboo<br />(''[[Bambusa chungii]]'')
| 64-72
| 64–72
| [[File:Bambusa chungii close up view of the stem in HK.JPG|100px]] ||
| [[File:Bambusa chungii close up view of the stem in HK.JPG|100px]] ||
|
|
|<ref>{{cite journal | vauthors = Li XL, Lin RS, Fung HL, Qi ZX, Song WQ, Chen RY | trans-title = Chromosome numbers of some caespitose bamboos native in or introduced to China | journal = Journal of Systematics and Evolution | script-title = zh:中国部分丛生竹类染色体数目报道 | volume = 39 | issue = 5 | pages = 433–442 | date = September 2001 | url = https://www.jse.ac.cn/EN/Y2001/V39/I5/433 | language = zh-cn }}</ref>
|<ref>{{cite journal | vauthors = Li XL, Lin RS, Fung HL, Qi ZX, Song WQ, Chen RY | title = Chromosome numbers of some caespitose bamboos native in or introduced to China | trans-title = Chromosome numbers of some caespitose bamboos native in or introduced to China | journal = Journal of Systematics and Evolution | script-title = zh:中国部分丛生竹类染色体数目报道 | volume = 39 | issue = 5 | pages = 433–442 | date = September 2001 | url = https://www.jse.ac.cn/EN/Y2001/V39/I5/433 | language = zh-cn }}</ref>
|-
|-
!173
! style="background:pink;"|[[Bat-eared fox]]<br />(''Otocyon megalotis'')
! style="background:pink;" |[[Bat-eared fox]]<br />(''Otocyon megalotis'')
| 72
| 72
| [[File:Otocyon megalotis (Namibia).jpg|100px]] ||
| [[File:Otocyon megalotis (Namibia).jpg|100px]] ||
Line 1,081: Line 1,262:
|<ref name=Canids/>
|<ref name=Canids/>
|-
|-
!174
! style="background:pink;"|[[Sun bear]]<br />(''Helarctos malayanus'')
! style="background:pink;" |[[Sun bear]]<br />(''Helarctos malayanus'')
| 74
| 74
| [[File:Sitting sun bear.jpg|100px]] ||
| [[File:Sitting sun bear.jpg|100px]] ||
Line 1,087: Line 1,269:
|
|
|-
|-
!175
! style="background:pink;"|[[Sloth bear]]<br />(''Melursus ursinus'')
! style="background:pink;" |[[Sloth bear]]<br />(''Melursus ursinus'')
| 74
| 74
| [[File:Sloth Bear Washington DC.JPG|100px]] ||
| [[File:Sloth Bear Washington DC.JPG|100px]] ||
Line 1,093: Line 1,276:
|
|
|-
|-
!176
! style="background:pink;"|[[Polar bear]]<br />(''Ursus maritimus'')
! style="background:pink;" |[[Polar bear]]<br />(''Ursus maritimus'')
| 74
| 74
| [[File:Polar Bear - Alaska.jpg|100px]] ||
| [[File:Polar Bear - Alaska.jpg|100px]] ||
Line 1,099: Line 1,283:
|
|
|-
|-
!177
! style="background:pink;"|[[Brown bear]]<br />(''Ursus arctos'')
! style="background:pink;" |[[Brown bear]]<br />(''Ursus arctos'')
| 74
| 74
| [[File:Brown bear (Ursus arctos arctos) running.jpg|100px]] ||
| [[File:Brown bear (Ursus arctos arctos) running.jpg|100px]] ||
Line 1,105: Line 1,290:
|
|
|-
|-
!178
! style="background:pink;"|[[Asian black bear]]<br />(''Ursus thibetanus'')
! style="background:pink;" |[[Asian black bear]]<br />(''Ursus thibetanus'')
| 74
| 74
| [[File:Kragenbär.jpg|100px]] ||
| [[File:Kragenbär.jpg|100px]] ||
Line 1,111: Line 1,297:
|
|
|-
|-
!179
! style="background:pink;"|[[American black bear]]<br />(''Ursus americanus'')
! style="background:pink;" |[[American black bear]]<br />(''Ursus americanus'')
| 74
| 74
| [[File:Ursus americanus sequoia forest 2003-09-21.jpg|100px]] ||
| [[File:Ursus americanus sequoia forest 2003-09-21.jpg|100px]] ||
Line 1,117: Line 1,304:
|
|
|-
|-
!180
! style="background:pink;"|[[Bush dog]]<br />(''Speothos venaticus'')
! style="background:pink;" |[[Bush dog]]<br />(''Speothos venaticus'')
| 74
| 74
| [[File:Speothos venaticus Zoo Praha 2011-5 (cropped).jpg|100px]] ||
| [[File:Speothos venaticus Zoo Praha 2011-5 (cropped).jpg|100px]] ||
Line 1,123: Line 1,311:
|
|
|-
|-
!181
! style="background:pink;"|[[Maned wolf]]<br />(''Chrysocyon brachyurus'')
! style="background:pink;" |[[Maned wolf]]<br />(''Chrysocyon brachyurus'')
| 76
| 76
| [[File:Chrysocyon.brachyurus.jpg|100px]] ||
| [[File:Chrysocyon.brachyurus.jpg|100px]] ||
Line 1,129: Line 1,318:
|
|
|-
|-
!182
! style="background:pink;"|[[Gray wolf]]<br />(''Canis lupus'')
! style="background:pink;" |[[Gray wolf]]<br />(''Canis lupus'')
| 78
| 78
| [[File:Canis lupus 265b.jpg|100px]] ||
| [[File:Canis lupus 265b.jpg|100px]] ||
Line 1,135: Line 1,325:
|
|
|-
|-
!183
! style="background:pink;"|[[Golden jackal]]<br />(''Canis aureus'')
! style="background:pink;" |[[Golden jackal]]<br />(''Canis aureus'')
| 78
| 78
| [[File:Golden wolf sa02.jpg|100px]] ||
| [[File:Golden wolf sa02.jpg|100px]] ||
Line 1,141: Line 1,332:
|<ref name=Canids/>
|<ref name=Canids/>
|-
|-
!184
! style="background:pink;"|Dove<br />(''Columbidae'')
! style="background:pink;" |Dove<br />(''Columbidae'')
| 78
| 78
| [[File:Rock dove - natures pics.jpg|100px]] ||
| [[File:Rock dove - natures pics.jpg|100px]] ||
Line 1,147: Line 1,339:
|<ref name = "DOVE">{{cite journal | vauthors = Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M | title = Comparative chromosome painting of chicken autosomal paints 1-9 in nine different bird species | journal = Cytogenetic and Genome Research | volume = 103 | issue = 1–2 | pages = 173–84 | year = 2003 | pmid = 15004483 | doi = 10.1159/000076309 | s2cid = 23508684 }}</ref>
|<ref name = "DOVE">{{cite journal | vauthors = Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M | title = Comparative chromosome painting of chicken autosomal paints 1-9 in nine different bird species | journal = Cytogenetic and Genome Research | volume = 103 | issue = 1–2 | pages = 173–84 | year = 2003 | pmid = 15004483 | doi = 10.1159/000076309 | s2cid = 23508684 }}</ref>
|-
|-
!185
! style="background:pink;"|[[Dog]]<br />(''Canis familiaris'')
! style="background:pink;" |[[Dog]]<br />(''Canis familiaris'')
| 78
| 78
| [[File:Boddhi the mixed-breed dog.jpg|100px]] || [[File:Karyotype of Dog (Canis lupus familiaris).png|150px]]
| [[File:Boddhi the mixed-breed dog.jpg|100px]] || [[File:Karyotype of Dog (Canis lupus familiaris).png|150px]]
Line 1,153: Line 1,346:
|<ref name = "DOG">{{cite journal | vauthors = Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SM, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger JP, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O'Neill B, O'Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES | display-authors = 6 | title = Genome sequence, comparative analysis and haplotype structure of the domestic dog | journal = Nature | volume = 438 | issue = 7069 | pages = 803–19 | date = December 2005 | pmid = 16341006 | doi = 10.1038/nature04338 | doi-access = free | bibcode = 2005Natur.438..803L }}</ref>
|<ref name = "DOG">{{cite journal | vauthors = Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SM, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger JP, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O'Neill B, O'Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES | display-authors = 6 | title = Genome sequence, comparative analysis and haplotype structure of the domestic dog | journal = Nature | volume = 438 | issue = 7069 | pages = 803–19 | date = December 2005 | pmid = 16341006 | doi = 10.1038/nature04338 | doi-access = free | bibcode = 2005Natur.438..803L }}</ref>
|-
|-
!186
! style="background:pink;"|[[Dingo]]<br />(''Canis familiaris'')
! style="background:pink;" |[[Dingo]]<br />(''Canis familiaris'')
| 78
| 78
| [[File:Canis lupus dingo - cleland wildlife park.JPG|100px]] ||
| [[File:Canis lupus dingo - cleland wildlife park.JPG|100px]] ||
Line 1,159: Line 1,353:
|<ref name=Canids/>
|<ref name=Canids/>
|-
|-
!187
! style="background:pink;"|[[Dhole]]<br />(''Cuon alpinus'')
! style="background:pink;" |[[Dhole]]<br />(''Cuon alpinus'')
| 78
| 78
| [[File:Cuon.alpinus-cut.jpg|100px]] ||
| [[File:Cuon.alpinus-cut.jpg|100px]] ||
Line 1,165: Line 1,360:
|
|
|-
|-
!188
! style="background:pink;"|[[Coyote]]<br />(''Canis latrans'')
! style="background:pink;" |[[Coyote]]<br />(''Canis latrans'')
| 78
| 78
| [[File:Coyote by Rebecca Richardson.jpg|100px]] ||
| [[File:Coyote by Rebecca Richardson.jpg|100px]] ||
Line 1,171: Line 1,367:
|<ref name=Canids/>
|<ref name=Canids/>
|-
|-
!189
! style="background:pink;"|[[Chicken]]<br />(''Gallus gallus domesticus'')
! style="background:pink;" |[[Chicken]]<br />(''Gallus gallus domesticus'')
| 78
| 78
| [[File:Female pair.jpg|100px]] || [[File:Karyotype of chicken (Gallus gallus).png|150px]]
| [[File:Female pair.jpg|100px]] || [[File:Karyotype of chicken (Gallus gallus).png|150px]]
Line 1,177: Line 1,374:
|
|
|-
|-
!190
! style="background:pink;"|[[African wild dog]]<br />(''Lycaon pictus'')
! style="background:pink;" |[[African wild dog]]<br />(''Lycaon pictus'')
| 78
| 78
| [[File:Lycaon pictus (Temminck, 1820).jpg|100px]] ||
| [[File:Lycaon pictus (Temminck, 1820).jpg|100px]] ||
Line 1,183: Line 1,381:
|<ref name=Canids>{{Cite book| vauthors = Sillero-Zubiri C, Hoffmann MJ, Mech D |title=Canids: Foxes, Wolves, Jackals and Dogs: Status Survey and Conservation Action Plan |publisher=World Conservation Union |year=2004 |isbn=978-2-8317-0786-0 }}{{Page needed|date=September 2010}}</ref>
|<ref name=Canids>{{Cite book| vauthors = Sillero-Zubiri C, Hoffmann MJ, Mech D |title=Canids: Foxes, Wolves, Jackals and Dogs: Status Survey and Conservation Action Plan |publisher=World Conservation Union |year=2004 |isbn=978-2-8317-0786-0 }}{{Page needed|date=September 2010}}</ref>
|-
|-
!191
! style="background:lightgreen;"|[[Tropical pitcher plant]]<br />(''Nepenthes rafflesiana'')
! style="background:lightgreen;" |[[Tropical pitcher plant]]<br />(''Nepenthes rafflesiana'')
| 78
| 78
| [[File:Pahangraff3.jpg|100px]] ||
| [[File:Pahangraff3.jpg|100px]] ||
Line 1,189: Line 1,388:
|<ref name="carnivorous plants"/>
|<ref name="carnivorous plants"/>
|-
|-
!192
! style="background:pink;"|[[Turkey (bird)|Turkey]]<br />(''Meleagris'')
! style="background:pink;" |[[Turkey (bird)|Turkey]]<br />(''Meleagris'')
| 80
| 80
| [[File:Wild turkey eastern us.jpg|100px]] ||
| [[File:Wild turkey eastern us.jpg|100px]] ||
|
|
|<ref name="Aslan">{{cite journal | vauthors = Aslam ML, Bastiaansen JW, Crooijmans RP, Vereijken A, Megens HJ, Groenen MA | title = A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the turkey and chicken genomes | journal = BMC Genomics | volume = 11 | page = 647 | date = November 2010 | pmid = 21092123 | pmc = 3091770 | doi = 10.1186/1471-2164-11-647 | url = }}</ref>
|<ref name="Aslan">{{cite journal | vauthors = Aslam ML, Bastiaansen JW, Crooijmans RP, Vereijken A, Megens HJ, Groenen MA | title = A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the turkey and chicken genomes | journal = BMC Genomics | volume = 11 | page = 647 | date = November 2010 | pmid = 21092123 | pmc = 3091770 | doi = 10.1186/1471-2164-11-647 | url = | doi-access = free }}</ref>
|-
|-
!193
! style="background:lightgreen;"|Sugarcane<br />(''[[Saccharum officinarum]]'')
! style="background:lightgreen;" |Sugarcane<br />(''[[Saccharum officinarum]]'')
| 80
| 80
| [[File:Cut sugarcane.jpg|100px]] || [[File:Karyotype of Sugarcane (Saccharum officinarum LA Purple).png|150px]]
| [[File:Cut sugarcane.jpg|100px]] || [[File:Karyotype of Sugarcane (Saccharum officinarum LA Purple).png|150px]]
| This is for ''[[Saccharum officinarum|S. officinarum]]'' ([[octoploid]], 2n = 8× = 80).<ref name="pmid20416060"/> About 70% of the world's [[sugar]] comes from this species.<ref name="urlSaccharum officinarum L">{{cite web |url=http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:419977-1 |title=Saccharum officinarum L. &#124; Plants of the World Online &#124; Kew Science |access-date=2017-07-02}}</ref> Other species in the genus ''[[Saccharum]]'', collectively known as sugarcane, have chromosome numbers in the range 2n=40–128.<ref name="HenryKole2010">{{cite book| vauthors = Henry RJ, Kole C |title=Genetics, Genomics and Breeding of Sugarcane|url=https://books.google.com/books?id=NeVyCQAAQBAJ&pg=PA70|date=15 August 2010|publisher=CRC Press|isbn=978-1-4398-4860-9|page=70}}</ref>
| This is for ''[[Saccharum officinarum|S. officinarum]]'' ([[octoploid]], 2n = 8× = 80).<ref name="pmid20416060"/> About 70% of the world's [[sugar]] comes from this species.<ref name="urlSaccharum officinarum L">{{cite web |url=http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:419977-1 |title=Saccharum officinarum L. &#124; Plants of the World Online &#124; Kew Science |access-date=2017-07-02}}</ref> Other species in the genus ''[[Saccharum]]'', collectively known as sugarcane, have chromosome numbers in the range 2n=40–128.<ref name="HenryKole2010">{{cite book| vauthors = Henry RJ, Kole C |title=Genetics, Genomics and Breeding of Sugarcane|url=https://books.google.com/books?id=NeVyCQAAQBAJ&pg=PA70|date=15 August 2010|publisher=CRC Press|isbn=978-1-4398-4860-9|page=70}}</ref>
|<ref name="pmid20416060">{{cite journal | vauthors = Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, Chen C, Najar F, Wiley G, Bowers J, Van Sluys MA, Rokhsar DS, Hudson ME, Moose SP, Paterson AH, Ming R | display-authors = 6 | title = Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes | journal = BMC Genomics | volume = 11 | page = 261 | date = April 2010 | pmid = 20416060 | pmc = 2882929 | doi = 10.1186/1471-2164-11-261 }}</ref>
|<ref name="pmid20416060">{{cite journal | vauthors = Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, Chen C, Najar F, Wiley G, Bowers J, Van Sluys MA, Rokhsar DS, Hudson ME, Moose SP, Paterson AH, Ming R | display-authors = 6 | title = Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes | journal = BMC Genomics | volume = 11 | page = 261 | date = April 2010 | pmid = 20416060 | pmc = 2882929 | doi = 10.1186/1471-2164-11-261 | doi-access = free }}</ref>
|-
|-
!194
! style="background:pink;"|[[Pigeon]]<br />(Columbidae)
! style="background:pink;" |[[Pigeon]]<br />(Columbidae)
| 80
| 80
| [[File:Paloma en la Ciudad de México.JPG|100px]] ||
| [[File:Paloma en la Ciudad de México.JPG|100px]] ||
Line 1,207: Line 1,409:
|<ref name="Susumu">{{cite journal | vauthors = Ohno S, Stenius C, Christian LC, Becak W, Becak ML | title = Chromosomal uniformity in the avian subclass Carinatae | journal = Chromosoma | volume = 15 | issue = 3 | pages = 280–8 | date = August 1964 | pmid = 14196875 | doi = 10.1007/BF00321513 | s2cid = 12310455 }}</ref>
|<ref name="Susumu">{{cite journal | vauthors = Ohno S, Stenius C, Christian LC, Becak W, Becak ML | title = Chromosomal uniformity in the avian subclass Carinatae | journal = Chromosoma | volume = 15 | issue = 3 | pages = 280–8 | date = August 1964 | pmid = 14196875 | doi = 10.1007/BF00321513 | s2cid = 12310455 }}</ref>
|-
|-
!195
! style="background:pink;"|[[Azure-winged magpie]]<br />(''Cyanopica cyanus'')
! style="background:pink;" |[[Azure-winged magpie]]<br />(''Cyanopica cyanus'')
|80
|80
|[[File:Cyanopica cyanus Yokohama 5.jpg|100px]]
|[[File:Cyanopica cyanus Yokohama 5.jpg|100px]]
Line 1,214: Line 1,417:
|<ref>Roslik, G.V. and Kryukov A. (2001). A Karyological Study of Some Corvine Birds (Corvidae, Aves). Russian Journal of Genetics 37(7):796-806. DOI: 10.1023/A:1016703127516</ref>
|<ref>Roslik, G.V. and Kryukov A. (2001). A Karyological Study of Some Corvine Birds (Corvidae, Aves). Russian Journal of Genetics 37(7):796-806. DOI: 10.1023/A:1016703127516</ref>
|-
|-
!196
! style="background:pink;"|[[Great white shark]]<br />(''Carcharodon carcharias'')
! style="background:pink;" |[[Great white shark]]<br />(''Carcharodon carcharias'')
| 82
| 82
| [[File:Carcharodon carcharias.jpg|100px]] ||
| [[File:Carcharodon carcharias.jpg|100px]] ||
Line 1,220: Line 1,424:
|<ref>Gregory, T.R. (2015). Animal Genome Size Database. http://www.genomesize.com/result_species.php?id=1701</ref>
|<ref>Gregory, T.R. (2015). Animal Genome Size Database. http://www.genomesize.com/result_species.php?id=1701</ref>
|-
|-
!197
! style="background:lightgreen;"|[[Bloody geranium]]<br />(''Geranium sanguineum'')
! style="background:lightgreen;" |[[Geranium sanguineum|Bloody crane's-bill]]<br />(''Geranium sanguineum'')
| 84
| 84
| [[File:Geranium_sanguineum_-_verev_kurereha.jpg|100px]] ||
| [[File:Geranium_sanguineum_-_verev_kurereha.jpg|100px]] ||
|
|
| <ref>{{cite journal |title=Can Knowledge of Genetic Distances, Genome Sizes and Chromosome Numbers Support Breeding Programs in Hardy Geraniums? |year=2021 |pmc=8152959 |last1=Akbarzadeh |first1=M. |last2=Van Laere |first2=K. |last3=Leus |first3=L. |last4=De Riek |first4=J. |last5=Van Huylenbroeck |first5=J. |last6=Werbrouck |first6=S. P. |last7=Dhooghe |first7=E. |journal=Genes |volume=12 |issue=5 |page=730 |doi=10.3390/genes12050730 |pmid=34068148 |doi-access=free }}</ref>
|<ref>{{cite journal |title=Can Knowledge of Genetic Distances, Genome Sizes and Chromosome Numbers Support Breeding Programs in Hardy Geraniums? |year=2021 |pmc=8152959 |last1=Akbarzadeh |first1=M. |last2=Van Laere |first2=K. |last3=Leus |first3=L. |last4=De Riek |first4=J. |last5=Van Huylenbroeck |first5=J. |last6=Werbrouck |first6=S. P. |last7=Dhooghe |first7=E. |journal=Genes |volume=12 |issue=5 |page=730 |doi=10.3390/genes12050730 |pmid=34068148 |doi-access=free }}</ref>
|-
|-
!198
! style="background:lightgreen;"|[[Botrychium|Moonworts]]<br />(''Botrychium'')
! style="background:lightgreen;" |[[Botrychium|Moonworts]]<br />(''Botrychium'')
| 90
| 90
| [[File:Botrychium-4.jpg|100px]] ||
| [[File:Botrychium-4.jpg|100px]] ||
Line 1,232: Line 1,438:
|
|
|-
|-
!199
! style="background:lightgreen;"|[[Grape fern]]<br />(''Sceptridium'')
! style="background:lightgreen;" |[[Grape fern]]<br />(''Sceptridium'')
| 90
| 90
| [[File:Botrychium multifidum.jpg|100px]] ||
| [[File:Botrychium multifidum.jpg|100px]] ||
Line 1,238: Line 1,445:
|
|
|-
|-
!200
! style="background:pink;"|[[Pittier's crab-eating rat]]<br />(''Ichthyomys pittieri'')
! style="background:pink;" |[[Pittier's crab-eating rat]]<br />(''Ichthyomys pittieri'')
| 92
| 92
| [[File:Ichthyomys hydrobates soderstromi Smit.jpg|100px]]||
| ||
| Previously thought to be the highest number in mammals, tied with ''Anotomys leander''.
| Previously thought to be the highest number in mammals, tied with ''Anotomys leander''.
|<ref name=Schmid>{{cite journal | vauthors = Schmid M, Fernández-Badillo A, Feichtinger W, Steinlein C, Roman JI | title = On the highest chromosome number in mammals | journal = Cytogenetics and Cell Genetics | volume = 49 | issue = 4 | pages = 305–8 | year = 1988 | pmid = 3073914 | doi = 10.1159/000132683 }}</ref>
|<ref name=Schmid>{{cite journal | vauthors = Schmid M, Fernández-Badillo A, Feichtinger W, Steinlein C, Roman JI | title = On the highest chromosome number in mammals | journal = Cytogenetics and Cell Genetics | volume = 49 | issue = 4 | pages = 305–8 | year = 1988 | pmid = 3073914 | doi = 10.1159/000132683 }}</ref>
|-
|-
!201
! style="background:pink;"|[[Shrimp|Prawn]]<br />(''[[Penaeus semisulcatus]]'')
! style="background:pink;" |[[Shrimp|Prawn]]<br />(''[[Penaeus semisulcatus]]'')
| {{sort|86|86–92}}
| {{sort|86|86–92}}
| [[File:Penaeus monodon.jpg|100px]] ||
| [[File:Penaeus monodon.jpg|100px]] ||
Line 1,250: Line 1,459:
|<ref name=Hosseini>{{Cite journal|vauthors=Hosseini SJ, Elahi E, Raie RM |title=The Chromosome Number of the Persian Gulf Shrimp Penaeus semisulcatus |journal=Iranian Int. J. Sci |volume=5 |issue=1 |pages=13–23 |year=2004}}</ref>
|<ref name=Hosseini>{{Cite journal|vauthors=Hosseini SJ, Elahi E, Raie RM |title=The Chromosome Number of the Persian Gulf Shrimp Penaeus semisulcatus |journal=Iranian Int. J. Sci |volume=5 |issue=1 |pages=13–23 |year=2004}}</ref>
|-
|-
!202
! style="background:pink;"|[[Aquatic rat]]<br />(''Anotomys leander'')
! style="background:pink;" |[[Aquatic rat]]<br />(''Anotomys leander'')
| 92
| 92
| [[File:Muskrat swimming Ottawa.jpg|100px]]||
| ||
| Previously thought to be the highest number in mammals, tied with ''Ichthyomys pittieri''.
| Previously thought to be the highest number in mammals, tied with ''Ichthyomys pittieri''.
|<ref name=Schmid/>
|<ref name=Schmid/>
|-
|-
!203
! style="background:lightgreen;"|[[Helminthostachys zeylanica|Kamraj]] (fern)<br />(''Helminthostachys zeylanica'')
! style="background:lightgreen;" |[[Helminthostachys zeylanica|Kamraj]] (fern)<br />(''Helminthostachys zeylanica'')
| 94
| 94
| [[File:Helminthostachys zeylanica.jpg|100px]] ||
| [[File:Helminthostachys zeylanica.jpg|100px]] ||
Line 1,262: Line 1,473:
|
|
|-
|-
!204
! style="background:pink;"|[[Crucian carp]]<br />(''Carassius carassius'')
! style="background:pink;" |[[Crucian carp]]<br />(''Carassius carassius'')
| 100
| 100
| [[File:Cyprinus carpio.jpeg|100px]] || [[File:Karyotype of crucian carp (Carassius carassius).png|150px]]
| [[File:Cyprinus carpio.jpeg|100px]] || [[File:Karyotype of crucian carp (Carassius carassius).png|150px]]
|
|
|<ref name="pmid25349674">{{cite journal | vauthors = Spoz A, Boron A, Porycka K, Karolewska M, Ito D, Abe S, Kirtiklis L, Juchno D | display-authors = 6 | title = Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes | journal = Comparative Cytogenetics | volume = 8 | issue = 3 | pages = 233–48 | year = 2014 | pmid = 25349674 | pmc = 4205492 | doi = 10.3897/CompCytogen.v8i3.7718 }}</ref>
|<ref name="pmid25349674">{{cite journal | vauthors = Spoz A, Boron A, Porycka K, Karolewska M, Ito D, Abe S, Kirtiklis L, Juchno D | display-authors = 6 | title = Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes | journal = Comparative Cytogenetics | volume = 8 | issue = 3 | pages = 233–48 | year = 2014 | pmid = 25349674 | pmc = 4205492 | doi = 10.3897/CompCytogen.v8i3.7718 | doi-access = free }}</ref>
|-
|-
!205
! style="background:pink;"|[[Red viscacha rat]]<br />(''Tympanoctomys barrerae'')
! style="background:pink;" |[[Red viscacha rat]]<br />(''Tympanoctomys barrerae'')
| 102
| 102
| [[File:Tympanoctomys barrerae.jpg|100px]] || [[File:Metaphase spread of the Viscacha rat (Tympanoctomys barrerae).jpg|150px]]
| [[File:Tympanoctomys barrerae.jpg|100px]] || [[File:Metaphase spread of the Viscacha rat (Tympanoctomys barrerae).jpg|150px]]
Line 1,274: Line 1,487:
|<ref name=Contreras>{{cite journal | vauthors = Contreras LC, Torres-Mura JC, Spotorno AE | title = The largest known chromosome number for a mammal, in a South American desert rodent | journal = Experientia | volume = 46 | issue = 5 | pages = 506–8 | date = May 1990 | pmid = 2347403 | doi = 10.1007/BF01954248 | s2cid = 33553988 }}</ref>
|<ref name=Contreras>{{cite journal | vauthors = Contreras LC, Torres-Mura JC, Spotorno AE | title = The largest known chromosome number for a mammal, in a South American desert rodent | journal = Experientia | volume = 46 | issue = 5 | pages = 506–8 | date = May 1990 | pmid = 2347403 | doi = 10.1007/BF01954248 | s2cid = 33553988 }}</ref>
|-
|-
!206
! style="background:pink;"|[[Walking catfish]]<br />(''Clarias batrachus'')
! style="background:pink;" |[[Walking catfish]]<br />(''Clarias batrachus'')
| 104
| 104
| [[File:Clarias batrachus.jpg|100px]] || [[File:Karyotype of walking catfish (Clarias batrachus).png|150px]]
| [[File:Clarias batrachus.jpg|100px]] || [[File:Karyotype of walking catfish (Clarias batrachus).png|150px]]
|
|
|<ref name="pmid26793275">{{cite journal | vauthors = Maneechot N, Yano CF, Bertollo LA, Getlekha N, Molina WF, Ditcharoen S, Tengjaroenkul B, Supiwong W, Tanomtong A, de Bello Cioffi M | display-authors = 6 | title = Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes) | journal = Molecular Cytogenetics | volume = 9 | page = 4 | year = 2016 | pmid = 26793275 | pmc = 4719708 | doi = 10.1186/s13039-016-0215-2 }}</ref>
|<ref name="pmid26793275">{{cite journal | vauthors = Maneechot N, Yano CF, Bertollo LA, Getlekha N, Molina WF, Ditcharoen S, Tengjaroenkul B, Supiwong W, Tanomtong A, de Bello Cioffi M | display-authors = 6 | title = Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes) | journal = Molecular Cytogenetics | volume = 9 | page = 4 | year = 2016 | pmid = 26793275 | pmc = 4719708 | doi = 10.1186/s13039-016-0215-2 | doi-access = free }}</ref>
|-
|-
!207
! style="background:pink;"|[[American paddlefish]]<br />(''Polyodon spathula'')
! style="background:pink;" |[[American paddlefish]]<br />(''Polyodon spathula'')
| 120
| 120
| [[File:Paddlefish underwater.jpeg|100px]] || [[File:Karyotype of North American paddlefish (Polyodon spathula).png|150px]]
| [[File:Paddlefish underwater.jpeg|100px]] || [[File:Karyotype of North American paddlefish (Polyodon spathula).png|150px]]
|
|
|<ref name="pmid28253860">{{cite journal | vauthors = Symonová R, Havelka M, Amemiya CT, Howell WM, Kořínková T, Flajšhans M, Gela D, Ráb P | display-authors = 6 | title = Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula) | journal = BMC Genetics | volume = 18 | issue = 1 | page = 19 | date = March 2017 | pmid = 28253860 | pmc = 5335500 | doi = 10.1186/s12863-017-0484-8 }}</ref>
|<ref name="pmid28253860">{{cite journal | vauthors = Symonová R, Havelka M, Amemiya CT, Howell WM, Kořínková T, Flajšhans M, Gela D, Ráb P | display-authors = 6 | title = Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula) | journal = BMC Genetics | volume = 18 | issue = 1 | page = 19 | date = March 2017 | pmid = 28253860 | pmc = 5335500 | doi = 10.1186/s12863-017-0484-8 | doi-access = free }}</ref>
|-
|-
!208
! style="background:lightgreen;"|[[Limestone fern]]<br />(''Gymnocarpium robertianum'')
! style="background:lightgreen;" |[[Limestone fern]]<br />(''Gymnocarpium robertianum'')
| 160
| 160
| [[File:Gymnocarpium_robertianum,_Ireland.jpg|100px]] ||
| [[File:Gymnocarpium_robertianum,_Ireland.jpg|100px]] ||
| Tetraploid (2n = 4x = 160)
| Tetraploid (2n = 4x = 160)
| <ref>{{cite web |url=https://www.researchgate.net/publication/264000883 |title=Chromosome numbers of Polish ferns |date= |website=researchgate.net}}</ref>
|<ref>{{cite web |url=https://www.researchgate.net/publication/264000883 |title=Chromosome numbers of Polish ferns |date= |website=researchgate.net}}</ref>
|-
|-
!209
! style = "background:lightgreen;"|[[African baobab]]<br />(''Adansonia digitata'')
! style="background:lightgreen;" |[[African baobab]]<br />(''Adansonia digitata'')
| 168
| 168
| [[File:Baobab_and_elephant,_Tanzania.jpg|100px]] ||
| [[File:Baobab_and_elephant,_Tanzania.jpg|100px]] ||
| Also known as the "tree of life". 2''n'' = 4''x'' = 168
| Also known as the "tree of life". 2''n'' = 4''x'' = 168
| <ref>{{cite journal | vauthors = Islam-Faridi N, Sakhanokho HF, Dana Nelson C | title = New chromosome number and cyto-molecular characterization of the African Baobab (Adansonia digitata L.) - "The Tree of Life" | journal = Scientific Reports | volume = 10 | issue = 1 | page = 13174 | date = August 2020 | pmid = 32764541 | doi = 10.1038/s41598-020-68697-6 | pmc = 7413363 | bibcode = 2020NatSR..1013174I | doi-access = free }}</ref>
|<ref>{{cite journal | vauthors = Islam-Faridi N, Sakhanokho HF, Dana Nelson C | title = New chromosome number and cyto-molecular characterization of the African Baobab (Adansonia digitata L.) - "The Tree of Life" | journal = Scientific Reports | volume = 10 | issue = 1 | page = 13174 | date = August 2020 | pmid = 32764541 | doi = 10.1038/s41598-020-68697-6 | pmc = 7413363 | bibcode = 2020NatSR..1013174I | doi-access = free }}</ref>
|-
|-
!210
! style="background:pink;"|[[Northern lamprey]]<br />(Petromyzontidae)
! style="background:pink;" |[[Petromyzontidae|Northern lampreys]]<br />(Petromyzontidae)
| 174
| 174
| [[File:Petromyzon marinus2.jpg|100px]] ||
| [[File:Petromyzon marinus2.jpg|100px]] ||
Line 1,307: Line 1,525:
| vauthors = Eschmeyer WM }}</ref>
| vauthors = Eschmeyer WM }}</ref>
|-
|-
!211
! style="background:lightgreen;"|[[Rattlesnake fern]]<br />(''Botrypus virginianus'')
! style="background:lightgreen;" |[[Rattlesnake fern]]<br />(''Botrypus virginianus'')
| 184
| 184
| [[File:Botrychium virginianum.JPG|100px]] ||
| [[File:Botrychium virginianum.JPG|100px]] ||
Line 1,313: Line 1,532:
|<ref>{{Cite book | url = http://efloras.org/florataxon.aspx?flora_id=1&taxon_id=233500296 | title = Flora of North America | publisher = [[Missouri Botanical Garden, St. Louis]] | year = 1993 | author = Flora of North America Editorial Committee }}</ref>
|<ref>{{Cite book | url = http://efloras.org/florataxon.aspx?flora_id=1&taxon_id=233500296 | title = Flora of North America | publisher = [[Missouri Botanical Garden, St. Louis]] | year = 1993 | author = Flora of North America Editorial Committee }}</ref>
|-
|-
!212
! style="background:pink;"|[[Red king crab]]<br />(''Paralithodes camtschaticus'')
! style="background:pink;" |[[Red king crab]]<br />(''Paralithodes camtschaticus'')
| 208
| 208
|[[File:Paralithodes camtschaticus, 1.jpg|100px]] ||
|[[File:Paralithodes camtschaticus, 1.jpg|100px]] ||
Line 1,319: Line 1,539:
|
|
|-
|-
!213
! style="background:lightgreen;"|[[Field horsetail]]<br />(''Equisetum arvense'')
! style="background:lightgreen;" |[[Field horsetail]]<br />(''Equisetum arvense'')
| 216
| 216
| [[File:Equisetum arvense foliage.jpg|100px]] ||
| [[File:Equisetum arvense foliage.jpg|100px]] ||
Line 1,325: Line 1,546:
|
|
|-
|-
!214
! style="background:pink;"|[[Agrodiaetus]] butterfly<br />(''Agrodiaetus shahrami'')
! style="background:pink;" |[[Agrodiaetus]] butterfly<br />(''Agrodiaetus shahrami'')
| 268
| 268
| [[File:Bläuling auf einer Distel.jpg|100px]]||
| ||
|This insect has one of the highest chromosome numbers among all <!--multicellular : redundant, as all animals are metazoans, which are multicellular (except for egg/sperm cells)-->animals.
|This insect has one of the highest chromosome numbers among all <!--multicellular : redundant, as all animals are metazoans, which are multicellular (except for egg/sperm cells)-->animals.
|<ref name="Lukhtanov 2005">{{cite journal | vauthors = Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE | title = Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies | journal = Nature | volume = 436 | issue = 7049 | pages = 385–9 | date = July 2005 | pmid = 16034417 | doi = 10.1038/nature03704 | s2cid = 4431492 | bibcode = 2005Natur.436..385L }}</ref>
|<ref name="Lukhtanov 2005">{{cite journal | vauthors = Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE | title = Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies | journal = Nature | volume = 436 | issue = 7049 | pages = 385–9 | date = July 2005 | pmid = 16034417 | doi = 10.1038/nature03704 | s2cid = 4431492 | bibcode = 2005Natur.436..385L }}</ref>
|-
|-
!215
! style="background:lightgreen;"|[[Black mulberry]]<br />(''Morus nigra'')
! style="background:lightgreen;" |[[Black mulberry]]<br />(''Morus nigra'')
| 308
| 308
| [[File:Morus-nigra.JPG|100px]] ||
| [[File:Morus-nigra.JPG|100px]] ||
Line 1,337: Line 1,560:
|<ref>{{cite journal | vauthors = Zeng Q, Chen H, Zhang C, Han M, Li T, Qi X, Xiang Z, He N | display-authors = 6 | title = Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny | journal = PLOS ONE | volume = 10 | issue = 8 | pages = e0135411 | date = 2015 | pmid = 26266951 | pmc = 4534381 | doi = 10.1371/journal.pone.0135411 | bibcode = 2015PLoSO..1035411Z | doi-access = free }}</ref>
|<ref>{{cite journal | vauthors = Zeng Q, Chen H, Zhang C, Han M, Li T, Qi X, Xiang Z, He N | display-authors = 6 | title = Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny | journal = PLOS ONE | volume = 10 | issue = 8 | pages = e0135411 | date = 2015 | pmid = 26266951 | pmc = 4534381 | doi = 10.1371/journal.pone.0135411 | bibcode = 2015PLoSO..1035411Z | doi-access = free }}</ref>
|-
|-
!216
! style="background:pink;"|[[Polyommatus atlantica|Atlas blue]]<br />(''Polyommatus atlantica'')
! style="background:pink;" |[[Polyommatus atlantica|Atlas blue]]<br />(''Polyommatus atlantica'')
| {{sort|448|448-452}}
| {{sort|448|448–452}}
| [[File:PolyommatusAtlanticaMMUpUnAC1.jpg|100px]] || [[File:Karyotype of Atlas blue (Polyommatus atlanticus).png|150px]]
| [[File:PolyommatusAtlanticaMMUpUnAC1.jpg|100px]] || [[File:Karyotype of Atlas blue (Polyommatus atlanticus).png|150px]]
| 2n = {{circa|448}}–452. Highest number of chromosomes in the non-[[polyploid]] [[eukaryotic]] organisms.<ref name="pmid26753083"/>
| 2n = {{circa|448}}–452. Highest number of chromosomes in the non-[[polyploid]] [[eukaryotic]] organisms.<ref name="pmid26753083"/>
|<ref name="pmid26753083">{{cite journal | vauthors = Lukhtanov VA | title = The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms | journal = Comparative Cytogenetics | volume = 9 | issue = 4 | pages = 683–90 | year = 2015 | pmid = 26753083 | pmc = 4698580 | doi = 10.3897/CompCytogen.v9i4.5760 }}</ref>
|<ref name="pmid26753083">{{cite journal | vauthors = Lukhtanov VA | title = The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms | journal = Comparative Cytogenetics | volume = 9 | issue = 4 | pages = 683–90 | year = 2015 | pmid = 26753083 | pmc = 4698580 | doi = 10.3897/CompCytogen.v9i4.5760 | doi-access = free }}</ref>
|-
|-
!217
! style="background:lightgreen;"|[[Ophioglossaceae|Adders-tongue]]<br />(''[[Ophioglossum reticulatum]]'')
! style="background:lightgreen;" |[[Ophioglossaceae|Adders-tongue]]<br />(''[[Ophioglossum reticulatum]]'')
| 1260
| 1260
| [[File:Ophioglossum closeup.jpg|100px]] ||
| [[File:Ophioglossum closeup.jpg|100px]] ||
| n=120–720 with a high degree of polyploidization<ref>{{cite journal | vauthors = Lukhtanov VA | title = The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms | journal = Comparative Cytogenetics | volume = 9 | issue = 4 | pages = 683–90 | date = 2015-07-10 | pmid = 26753083 | pmc = 4698580 | doi = 10.3897/compcytogen.v9i4.5760 }}</ref> ''Ophioglossum reticulatum'' n=720 in hexaploid species, 2n=1260 in decaploid species <ref>{{Cite journal | doi=10.1080/00087114.1979.10796781|title = Occurrence of Various Cytotypes of ''Ophioglossum'' ReticulatumL. In a Population from N. E. India| journal=Caryologia| volume=32| issue=2| pages=135–146|year = 1979| vauthors = Sinha BM, Srivastava DP, Jha J }}</ref>
| n=120–720 with a high degree of polyploidization.<ref>{{cite journal | vauthors = Lukhtanov VA | title = The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms | journal = Comparative Cytogenetics | volume = 9 | issue = 4 | pages = 683–90 | date = 2015-07-10 | pmid = 26753083 | pmc = 4698580 | doi = 10.3897/compcytogen.v9i4.5760 | doi-access = free }}</ref> ''Ophioglossum reticulatum'' n=720 in hexaploid species, 2n=1260 in decaploid species.<ref>{{Cite journal | doi=10.1080/00087114.1979.10796781|title = Occurrence of Various Cytotypes of ''Ophioglossum'' ReticulatumL. In a Population from N. E. India| journal=Caryologia| volume=32| issue=2| pages=135–146|year = 1979| vauthors = Sinha BM, Srivastava DP, Jha J | doi-access=free}}</ref>
|
|
|-
|-
!218
! style="background:lightblue;"|Ciliated protozoa<br />(''[[Tetrahymena thermophila]]'')
! style="background:lightblue;" |Ciliated protozoa<br />(''[[Tetrahymena thermophila]]'')
| {{sort|10|10 (in micronucleus)}}
| {{sort|10|10 (in micronucleus)}}
| [[File:Tetrahymena thermophila.png|100px]] ||
| [[File:Tetrahymena thermophila.png|100px]] ||
Line 1,355: Line 1,581:
|
|
|-
|-
!219
! style="background:lightblue;"|Ciliated protozoa<br />(''[[Oxytricha trifallax]]'')
! style="background:lightblue;" |Ciliated protozoa<br />(''[[Sterkiella histriomuscorum]]'')
| 16,000<ref>{{cite news |last1=Miller |first1=Greg |title=This Bizarre Organism Builds Itself a New Genome Every Time It Has Sex |url=https://www.wired.com/2014/09/oxytricha-encrypted-genome/ |access-date=1 June 2021 |magazine=Wired |date=17 September 2014}}</ref>
| 16000<ref>{{cite news |last1=Miller |first1=Greg |title=This Bizarre Organism Builds Itself a New Genome Every Time It Has Sex |url=https://www.wired.com/2014/09/oxytricha-encrypted-genome/ |access-date=1 June 2021 |magazine=Wired |date=17 September 2014}}</ref>
| [[File:Oxytricha trifallax.jpg|100px]] ||
| [[File:Oxytricha trifallax.jpg|100px]] ||
| Macronuclear "nanochromosomes"; ampliploid. MAC chromosomes × 1900 ploidy level = 2.964 × 10<sup>7</sup> chromosomes
| Macronuclear "nanochromosomes"; ampliploid. MAC chromosomes × 1900 ploidy level = 2.964 × 10<sup>7</sup> chromosomes
|<ref>{{cite journal | vauthors = Kumar S, Kumari R | title = Origin, structure and function of millions of chromosomes present in the macronucleus of unicellular eukaryotic ciliate, Oxytricha trifallax: a model organism for transgenerationally programmed genome rearrangements | journal = Journal of Genetics | volume = 94 | issue = 2 | pages = 171–6 | date = June 2015 | pmid = 26174664 | doi = 10.1007/s12041-015-0504-2 | url = http://www.ias.ac.in/describe/article/jgen/094/02/0171-0176 | s2cid = 14181659 }}</ref><ref name="KrisM81">{{cite journal | vauthors = Swart EC, Bracht JR, Magrini V, Minx P, Chen X, Zhou Y, Khurana JS, Goldman AD, Nowacki M, Schotanus K, Jung S, Fulton RS, Ly A, McGrath S, Haub K, Wiggins JL, Storton D, Matese JC, Parsons L, Chang WJ, Bowen MS, Stover NA, Jones TA, Eddy SR, Herrick GA, Doak TG, Wilson RK, Mardis ER, Landweber LF | display-authors = 6 | title = The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes | journal = PLOS Biology | volume = 11 | issue = 1 | pages = e1001473 | date = 2013-01-29 | pmid = 23382650 | pmc = 3558436 | doi = 10.1371/journal.pbio.1001473 }}</ref><ref>{{cite web | vauthors = Yong E | title = You Have 46 Chromosomes. This Pond Creature Has 15,600 | work = National Geographic | date = 6 February 2013 | url = http://phenomena.nationalgeographic.com/2013/02/06/you-have-46-chromsomes-this-pond-creature-has-15600/ }}</ref>
|<ref>{{cite journal | vauthors = Kumar S, Kumari R | title = Origin, structure and function of millions of chromosomes present in the macronucleus of unicellular eukaryotic ciliate, Oxytricha trifallax: a model organism for transgenerationally programmed genome rearrangements | journal = Journal of Genetics | volume = 94 | issue = 2 | pages = 171–6 | date = June 2015 | pmid = 26174664 | doi = 10.1007/s12041-015-0504-2 | url = http://www.ias.ac.in/describe/article/jgen/094/02/0171-0176 | s2cid = 14181659 }}</ref><ref name="KrisM81">{{cite journal | vauthors = Swart EC, Bracht JR, Magrini V, Minx P, Chen X, Zhou Y, Khurana JS, Goldman AD, Nowacki M, Schotanus K, Jung S, Fulton RS, Ly A, McGrath S, Haub K, Wiggins JL, Storton D, Matese JC, Parsons L, Chang WJ, Bowen MS, Stover NA, Jones TA, Eddy SR, Herrick GA, Doak TG, Wilson RK, Mardis ER, Landweber LF | display-authors = 6 | title = The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes | journal = PLOS Biology | volume = 11 | issue = 1 | pages = e1001473 | date = 2013-01-29 | pmid = 23382650 | pmc = 3558436 | doi = 10.1371/journal.pbio.1001473 | doi-access = free }}</ref><ref>{{cite web | vauthors = Yong E | title = You Have 46 Chromosomes. This Pond Creature Has 15,600 | work = National Geographic | date = 6 February 2013 | url = http://phenomena.nationalgeographic.com/2013/02/06/you-have-46-chromsomes-this-pond-creature-has-15600/ | archive-url = https://web.archive.org/web/20130208221253/http://phenomena.nationalgeographic.com/2013/02/06/you-have-46-chromsomes-this-pond-creature-has-15600/ | url-status = dead | archive-date = February 8, 2013 }}</ref>
|}
|}
<gallery mode=packed heights=300px>
<gallery mode=packed heights=300px>
Line 1,371: Line 1,598:
== Further reading ==
== Further reading ==
{{refbegin}}
{{refbegin}}
* {{Cite book |last=Makino |first=Sajiro |url=http://archive.org/details/atlasofchromosom00maki |title=An atlas of the chromosome numbers in animals |date=1951 |publisher=Ames, Iowa State College Press |others=MBLWHOI Library}}
* {{cite book | vauthors = Bell G | date = 1982 | title = The Masterpiece of Nature: The Evolution and Genetics of Sexuality | publisher = University of California Press | location = Berkeley | page = 450 | isbn = 9780856647536 | url = https://books.google.com/books?id=q5g9AAAAIAAJ&pg=PA450 }} (table with a compilation of haploid chromosome number of many algae and protozoa, in column "HAP").
* {{cite book | vauthors = Bell G | date = 1982 | title = The Masterpiece of Nature: The Evolution and Genetics of Sexuality | publisher = University of California Press | location = Berkeley | page = 450 | isbn = 9780856647536 | url = https://books.google.com/books?id=q5g9AAAAIAAJ&pg=PA450 }} (table with a compilation of haploid chromosome number of many algae and protozoa, in column "HAP").
* {{cite journal | vauthors = Nuismer SL, Otto SP | title = Host-parasite interactions and the evolution of ploidy | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 30 | pages = 11036–9 | date = July 2004 | pmid = 15252199 | pmc = 503737 | doi = 10.1073/pnas.0403151101 | bibcode = 2004PNAS..10111036N | doi-access = free }} [http://www.pnas.org/content/suppl/2004/07/13/0403151101.DC1/03151DataSet1.pdf Supporting Data Set], with information on ploidy level and number of chromosomes of several protists)
* {{cite journal | vauthors = Nuismer SL, Otto SP | title = Host-parasite interactions and the evolution of ploidy | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 30 | pages = 11036–9 | date = July 2004 | pmid = 15252199 | pmc = 503737 | doi = 10.1073/pnas.0403151101 | bibcode = 2004PNAS..10111036N | doi-access = free }} [http://www.pnas.org/content/suppl/2004/07/13/0403151101.DC1/03151DataSet1.pdf Supporting Data Set], with information on ploidy level and number of chromosomes of several protists)
Line 1,378: Line 1,606:
== External links ==
== External links ==
*[http://www.bionet.nsc.ru/labs/chromosomes/intr_engl.htm List of pages in English from Russian bionet site]
*[http://www.bionet.nsc.ru/labs/chromosomes/intr_engl.htm List of pages in English from Russian bionet site]
*[https://web.archive.org/web/20120301134035/http://www.provet.co.uk/dogs/evolution%20of%20the%20dog.htm The dog through evolution]
*[https://web.archive.org/web/20120301134035/http://www.provet.co.uk/dogs/evolution%20of%20the%20dog.htm The dog through evolution] (archived 1 March 2012)
*[https://web.archive.org/web/20150924033329/http://www.ihop-net.org/UniPub/iHOP/pm/746094.html?pmid=8893820 Shared synteny of human chromosome 17 loci in Canids]
*[https://web.archive.org/web/20150924033329/http://www.ihop-net.org/UniPub/iHOP/pm/746094.html?pmid=8893820 Shared synteny of human chromosome 17 loci in Canids] (archived 24 September 2015)
*[https://archive.org/details/atlasofchromosom00maki ''An atlas of the chromosome numbers in animals'' (1951); PDF downloads of each chapter]
*[https://archive.org/details/atlasofchromosom00maki ''An atlas of the chromosome numbers in animals'' (1951); PDF downloads of each chapter] on [[Internet Archive]]


{{Chromosome genetics}}
{{Chromosome genetics}}

Revision as of 17:34, 4 August 2024

The list of organisms by chromosome count describes ploidy or numbers of chromosomes in the cells of various plants, animals, protists, and other living organisms. This number, along with the visual appearance of the chromosome, is known as the karyotype,[1][2][3] and can be found by looking at the chromosomes through a microscope. Attention is paid to their length, the position of the centromeres, banding pattern, any differences between the sex chromosomes, and any other physical characteristics.[4] The preparation and study of karyotypes is part of cytogenetics.

  Plants
  Other Eukaryotes
S. No. Organism
(B SULLAR)
Chromosome number Picture Karyotype Notes Source
1 Jack jumper ant
(Myrmecia pilosula)
2/1 2 for females, males are haploid and thus have 1; smallest number possible. Other ant species have more chromosomes.[5] [5]
2 Spider mite
(Tetranychidae)
4–14 Spider mites (family Tetranychidae) are typically haplodiploid (males are haploid, while females are diploid)[6] [6]
3 Cricotopus sylvestris 4 [7]
4 Oikopleura dioica 6 [8]
5 Yellow fever mosquito
(Aedes aegypti)
6 The 2n=6 chromosome number is conserved in the entire family Culicidae, except in Chagasia bathana, which has 2n=8.[9] [9]
6 Indian muntjac
(Muntiacus muntjak)
6/7 2n = 6 for females and 7 for males. The lowest diploid chromosomal number in mammals.[10] [11]
7 Hieracium 8
8 Fruit fly
(Drosophila melanogaster)
8 6 autosomal and 2 allosomic (sex) [12]
9 Macrostomum lignano 8 [13]
10 Marchantia polymorpha 9 Typically haploid with dominant gametophyte stage. 8 autosomes and 1 allosome (sex chromosome). The sex-determination system used by this species and most other bryophytes is called UV. Spores can carry either the U chromosome, which results in female gametophytes, or the V chromosome, which results in males. The chromosome number n = 9 is the basic number in many species of Marchantiales. In some species of Marchantiales, plants with various ploidy levels (having 18 or 27 chromosomes) were reported, but this is rare in nature. [14]
11 Thale cress
(Arabidopsis thaliana)
10
12 Swamp wallaby
(Wallabia bicolor)
10/11 11 for male, 10 for female [15]
13 Australian daisy
(Brachyscome dichromosomatica)
12 This species can have more B chromosomes than A chromosomes at times, but 2n=4. [16]
14 Nematode
(Caenorhabditis elegans)
12/11 12 for hermaphrodites, 11 for males
15 Spinach
(Spinacia oleracea)
12 [17]
16 Broad bean
(Vicia faba)
12 [18]
17 Yellow dung fly
(Scathophaga stercoraria)
12 10 autosomal and 2 allosomic (sex) chromosomes. Males have XY sex chromosomes and females have XX sex chromosomes. The sex chromosomes are the largest chromosomes and constitute 30% of the total length of the diploid set in females and about 25% in males.[19] [19]
18 Slime mold
(Dictyostelium discoideum)
12 [20]
19 Cucumber
(Cucumis sativus)
14 [21]
20 Tasmanian devil
(Sarcophilus harrisii)
14
21 Rye
(Secale cereale)
14 [22]
22 Pea
(Pisum sativum)
14 [22]
23 Barley
(Hordeum vulgare)
14 [23]
24 Aloe vera 14 The diploid chromosome number is 2n = 14 with four pair of long acrocentric chromosomes ranging from 14.4 μm to 17.9 μm and three pair of short sub metacentric chromosomes ranging from 4.6 μm to 5.4 μm.[24] [24]
25 Koala
(Phascolarctos cinereus)
16
26 Kangaroo 16 This includes several members of genus Macropus, but not the red kangaroo (M. rufus, 20) [25]
27 Botryllus schlosseri 16 [26]
28 Schistosoma mansoni 16 2n=16. 7 autosomal pairs and ZW sex-determination pair.[27] [27]
29 Welsh onion
(Allium fistulosum)
16 [28]
30 Garlic
(Allium sativum)
16 [28]
31 Itch mite
(Sarcoptes scabiei)
17/18 According to the observation of embryonic cells of egg, chromosome number of the itch mite is either 17 or 18. While the cause for the disparate numbers is unknown, it may arise because of an XO sex determination mechanism, where males (2n=17) lack the sex chromosome and therefore have one less chromosome than the female (2n=18).[29] [29]
32 Radish
(Raphanus sativus)
18 [22]
33 Carrot
(Daucus carota)
18 The genus Daucus includes around 25 species. D. carota has nine chromosome pairs (2n = 2x = 18). D. capillifolius, D. sahariensis and D. syrticus are the other members of the genus with 2n = 18, whereas D. muricatus (2n = 20) and D. pusillus (2n = 22) have a slightly higher chromosome number. A few polyploid species as for example D. glochidiatus (2n = 4x = 44) and D. montanus (2n = 6x = 66) also exist.[30] [30]
34 Cabbage
(Brassica oleracea)
18 Broccoli, cabbage, kale, kohlrabi, brussels sprouts, and cauliflower are all the same species and have the same chromosome number.[22] [22]
35 Citrus
(Citrus)
18 Chromosome number of the genus Citrus, which including lemons, oranges, grapefruit, pomelo and limes, is 2n = 18.[31] [32]
36 Passion fruit
(Passiflora edulis)
18 [33]
37 Setaria viridis
(Setaria viridis)
18 [34]
38 Maize
(Zea mays)
20 [22]
39 Cannabis
(Cannabis sativa)
20
40 Western clawed frog
(Xenopus tropicalis)
20 [35]
41 Australian pitcher plant
(Cephalotus follicularis)
20 [36]
42 Cacao
(Theobroma cacao)
20 [37]
43 Eucalyptus
(Eucalyptus)
22 Although some contradictory cases have been reported, the large homogeneity of the chromosome number 2n = 22 is now known for 135 (33.5%) distinct species among genus Eucalyptus.[38] [39]
44 Virginia opossum
(Didelphis virginiana)
22 [40]
45 Bean
(Phaseolus sp.)
22 All species in the genus Phaseolus have the same chromosome number, including common bean (P. vulgaris), runner bean (P. coccineus), tepary bean (P. acutifolius) and lima bean (P. lunatus).[22] [22]
46 Snail 24
47 Melon
(Cucumis melo)
24 [41]
48 Rice
(Oryza sativa)
24 [22]
49 Silverleaf nightshade
(Solanum elaeagnifolium)
24 [42]
50 Sweet chestnut
(Castanea sativa)
24 [43]
51 Tomato
(Solanum lycopersicum)
24 [44]
52 European beech
(Fagus sylvatica)
24 [45]
53 Bittersweet nightshade
(Solanum dulcamara)
24 [46][47]
54 Cork oak
(Quercus suber)
24 [48]
55 Edible frog
(Pelophylax kl. esculentus)
26 Edible frog is the fertile hybrid of the pool frog and the marsh frog.[49] [50]
56 Axolotl
(Ambystoma mexicanum)
28 [51]
57 Bed bug
(Cimex lectularius)
29–47 26 autosomes and varying number of the sex chromosomes from three (X1X2Y) to 21 (X1X2Y+18 extra Xs).[52] [52]
58 Pill millipede
(Arthrosphaera magna attems)
30 [53]
59 Giraffe
(Giraffa camelopardalis)
30 [54]
60 American mink
(Neogale vison)
30
61 Pistachio
(Pistacia vera)
30 [55]
62 Japanese oak silkmoth (Antheraea yamamai) 31 [56]
63 Baker's yeast
(Saccharomyces cerevisiae)
32
64 European honey bee
(Apis mellifera)
32/16 32 for females (2n = 32), males are haploid and thus have 16 (1n =16).[57] [57]
65 American badger
(Taxidea taxus)
32
66 Alfalfa
(Medicago sativa)
32 Cultivated alfalfa is tetraploid, with 2n=4x=32. Wild relatives have 2n=16.[22]: 165  [22]
67 Red fox
(Vulpes vulpes)
34 Plus 0-8 B chromosomes. [58]
68 Sunflower
(Helianthus annuus)
34 [59]
69 Porcupine
(Erethizon dorsatum)
34 [60]
70 Globe artichoke
(Cynara cardunculus var. scolymus)
34 [61]
71 Yellow mongoose
(Cynictis penicillata)
36
72 Tibetan sand fox
(Vulpes ferrilata)
36
73 Starfish
(Asteroidea)
36
74 Red panda
(Ailurus fulgens)
36
75 Meerkat
(Suricata suricatta)
36
76 Cassava
(Manihot esculenta)
36 [62]
77 Long-nosed cusimanse
(Crossarchus obscurus)
36
78 Earthworm
(Lumbricus terrestris)
36
79 African clawed frog
(Xenopus laevis)
36 [35]
80 Waterwheel plant
(Aldrovanda vesiculosa)
38 [36]
81 Tiger
(Panthera tigris)
38
82 Sea otter
(Enhydra lutris)
38
83 Sable
(Martes zibellina)
38
84 Raccoon
(Procyon lotor)
38 [63]
85 Pine marten
(Martes martes)
38
86 Pig
(Sus)
38
87 Oriental small-clawed otter
(Aonyx cinerea)
38
88 Lion
(Panthera leo)
38
89 Fisher
(Pekania pennanti)
38 a type of marten
90 European mink
(Mustela lutreola)
38
91 Coatimundi 38
92 Cat
(Felis catus)
38
93 Beech marten
(Martes foina)
38
94 Baja California rat snake
(Bogertophis rosaliae)
38 [64]
95 American marten
(Martes americana)
38
96 Trans-Pecos ratsnake
(Bogertophis subocularis)
40 [65]
97 Mouse
(Mus musculus)
40 [66]
98 Mango
(Mangifera indica)
40 [22]
99 Hyena
(Hyaenidae)
40
100 Ferret
(Mustela furo)
40
101 European polecat
(Mustela putorius)
40
102 American beaver
(Castor canadensis)
40
103 Peanut
(Arachis hypogaea)
40 Cultivated peanut is an allotetraploid (2n = 4x = 40). Its closest relatives are the diploid (2n = 2x = 20).[67] [67]
104 Wolverine
(Gulo gulo)
42
105 Wheat
(Triticum aestivum)
42 This is a hexaploid with 2n=6x=42. Durum wheat is Triticum turgidum var. durum, and is a tetraploid with 2n=4x=28.[22] [22]
106 Rhesus monkey
(Macaca mulatta)
42 [68]
107 Rat
(Rattus norvegicus)
42 [69]
108 Oats
(Avena sativa)
42 This is a hexaploid with 2n=6x=42. Diploid and tetraploid cultivated species also exist.[22] [22]
109 Giant panda
(Ailuropoda melanoleuca)
42
110 Fossa
(Cryptoprocta ferox)
42
111 European rabbit
(Oryctolagus cuniculus)
44
112 Eurasian badger
(Meles meles)
44
113 Moon jellyfish
(Aurelia aurita)
44 [70]
114 Dolphin
(Delphinidae)
44
115 Arabian coffee
(Coffea arabica)
44 Out of the 103 species in the genus Coffea, arabica coffee is the only tetraploid species (2n = 4x = 44), the remaining species being diploid with 2n = 2x = 22.[71]
116 Reeves's muntjac
(Muntiacus reevesi)
46
117 Human
(Homo sapiens)
46 44 autosomal. and 2 allosomic (sex) [72]
118 Olive

(Olea Europaea)

46
119 Nilgai
(Boselaphus tragocamelus)
46 [73]
120 Parhyale hawaiensis 46 [74]
121 Water buffalo (swamp type)
(Bubalus bubalis)
48
122 Tobacco
(Nicotiana tabacum)
48 Cultivated species N. tabacum is an amphidiploid (2n=4x=48) evolved through the interspecific hybridization of the ancestors of N. sylvestris (2n=2x=24, maternal donor) and N. tomentosiformis (2n=2x=24, paternal donor) about 200,000 years ago.[75] [75]
123 Potato
(Solanum tuberosum)
48 This is for common potato Solanum tuberosum (tetraploid, 2n = 4x = 48). Other cultivated potato species may be diploid (2n = 2x = 24), triploid (2n = 3x = 36), tetraploid (2n = 4x = 48), or pentaploid (2n = 5x = 60).[76] Wild relatives mostly have 2n=24.[22] [76]
124 Orangutan
(Pongo)
48
125 Hare
(Lepus)
48 [77][78]
126 Gorilla
(Gorilla)
48
127 Deer mouse
(Peromyscus maniculatus)
48
128 Chimpanzee
(Pan troglodytes)
48 [79]
129 Eurasian beaver
(Castor fiber)
48
130 Zebrafish
(Danio rerio)
50 [80]
131 Woodland hedgehogs
Erinaceus
48 [81]
132 African hedgehogs
Atelerix
48 [82]
133 Water buffalo (Riverine type)
(Bubalus bubalis)
50
134 Striped skunk
(Mephitis mephitis)
50
135 Pineapple
(Ananas comosus)
50 [22]
136 Kit fox
(Vulpes macrotis)
50
137 Spectacled bear
(Tremarctos ornatus)
52
138 Platypus
(Ornithorhynchus anatinus)
52 Ten sex chromosomes. Males have X1Y1X2Y2X3Y3X4Y4X5Y5, females have X1X1X2X2X3X3X4X4X5X5.[83] [84]
139 Upland cotton
(Gossypium hirsutum)
52 This is for the cultivated species G. hirsutum (allotetraploid, 2n=4x=52). This species accounts for 90% of the world cotton production. Among 50 species in the genus Gossypium, 45 are diploid (2n = 2x = 26) and 5 are allotetraploid (2n = 4x = 52).[85] [85]
140 Sheep
(Ovis aries)
54
141 Hyrax
(Hyracoidea)
54 Hyraxes were considered to be the closest living relatives of elephants,[86] but sirenians have been found to be more closely related to elephants. [87]
142 Raccoon dog
(Nyctereutes procyonoides procyonoides)
54 This number is for common raccoon dog (N. p. procyonoides), 2n=54+B(0–4). On the other hand, Japanese raccoon dog (N. p. viverrinus) with 2n=38+B(0–8). Here, B represents B chromosome and its variation in the number between individuals.[88][89] [88]
143 Capuchin monkey
(Cebinae)
54 [90]
144 Silkworm
(Bombyx mori)
56 This is for the species mulberry silkworm, B. mori (2n=56). Probably more than 99% of the world's commercial silk today come from this species.[91] Other silk producing moths, called non-mulberry silkworms, have various chromosome numbers. (e.g. Samia cynthia with 2n=25–28,[92] Antheraea pernyi with 2n=98.[93]) [94]
145 Strawberry
(Fragaria × ananassa)
56 This number is octoploid, main cultivated species Fragaria × ananassa (2n = 8x = 56). In genus Fragaria, basic chromosome number is seven (x = 7) and multiple levels of ploidy, ranging from diploid (2n = 2x = 14) to decaploid (F. iturupensis, 2n = 10x = 70), are known.[95] [95]
146 Gaur
(Bos gaurus)
56
147 Elephant
(Elephantidae)
56
148 Woolly mammoth
(Mammuthus primigenius)
58 extinct; tissue from a frozen carcass
149 Domestic yak
(Bos grunniens)
60
150 Goat
(Capra hircus)
60
151 Cattle
(Bos taurus)
60
152 American bison
(Bison bison)
60
153 Sable antelope
(Hippotragus niger)
60 [96]
154 Bengal fox
(Vulpes bengalensis)
60
155 Gypsy moth
(Lymantria dispar dispar)
62
156 Donkey
(Equus asinus)
62
157 Scarlet macaw
(Ara macao)
62–64 [97]
158 Mule 63 semi-infertile (odd number of chromosomes – between donkey (62) and horse (64) makes meiosis much more difficult)
159 Guinea pig
(Cavia porcellus)
64
160 Spotted skunk
(Spilogale x)
64
161 Horse
(Equus caballus)
64
162 Fennec fox
(Vulpes zerda)
64 [98]
163 Echidna
(Tachyglossidae)
63/64 63 (X1Y1X2Y2X3Y3X4Y4X5, male) and 64 (X1X1X2X2X3X3X4X4X5X5, female)[99]
164 Chinchilla
(Chinchilla lanigera)
64 [60]
165 Nine-banded armadillo
(Dasypus novemcinctus)
64 [100]
166 Gray fox
(Urocyon cinereoargenteus)
66 [98]
167 Red deer
(Cervus elaphus)
68
168 Elk (wapiti)
(Cervus canadensis)
68
169 Roadside hawk
(Rupornis magnirostris)
68 [101]
170 White-tailed deer
(Odocoileus virginianus)
70
171 Black nightshade
(Solanum nigrum)
72 [102]
172 Tropical blue bamboo
(Bambusa chungii)
64–72 [103]
173 Bat-eared fox
(Otocyon megalotis)
72 [98]
174 Sun bear
(Helarctos malayanus)
74
175 Sloth bear
(Melursus ursinus)
74
176 Polar bear
(Ursus maritimus)
74
177 Brown bear
(Ursus arctos)
74
178 Asian black bear
(Ursus thibetanus)
74
179 American black bear
(Ursus americanus)
74
180 Bush dog
(Speothos venaticus)
74
181 Maned wolf
(Chrysocyon brachyurus)
76
182 Gray wolf
(Canis lupus)
78
183 Golden jackal
(Canis aureus)
78 [98]
184 Dove
(Columbidae)
78 Based on African collared dove [104]
185 Dog
(Canis familiaris)
78 Normal dog karyotype is composed of 38 pairs of acrocentric autosomes and two metacentric sex chromosomes.[105][106] [107]
186 Dingo
(Canis familiaris)
78 [98]
187 Dhole
(Cuon alpinus)
78
188 Coyote
(Canis latrans)
78 [98]
189 Chicken
(Gallus gallus domesticus)
78
190 African wild dog
(Lycaon pictus)
78 [98]
191 Tropical pitcher plant
(Nepenthes rafflesiana)
78 [36]
192 Turkey
(Meleagris)
80 [108]
193 Sugarcane
(Saccharum officinarum)
80 This is for S. officinarum (octoploid, 2n = 8× = 80).[109] About 70% of the world's sugar comes from this species.[110] Other species in the genus Saccharum, collectively known as sugarcane, have chromosome numbers in the range 2n=40–128.[111] [109]
194 Pigeon
(Columbidae)
80 [112]
195 Azure-winged magpie
(Cyanopica cyanus)
80 [113]
196 Great white shark
(Carcharodon carcharias)
82 [114]
197 Bloody crane's-bill
(Geranium sanguineum)
84 [115]
198 Moonworts
(Botrychium)
90
199 Grape fern
(Sceptridium)
90
200 Pittier's crab-eating rat
(Ichthyomys pittieri)
92 Previously thought to be the highest number in mammals, tied with Anotomys leander. [116]
201 Prawn
(Penaeus semisulcatus)
86–92 [117]
202 Aquatic rat
(Anotomys leander)
92 Previously thought to be the highest number in mammals, tied with Ichthyomys pittieri. [116]
203 Kamraj (fern)
(Helminthostachys zeylanica)
94
204 Crucian carp
(Carassius carassius)
100 [118]
205 Red viscacha rat
(Tympanoctomys barrerae)
102 Highest number known in mammals, thought to be a tetraploid[119] or allotetraploid.[120] [121]
206 Walking catfish
(Clarias batrachus)
104 [122]
207 American paddlefish
(Polyodon spathula)
120 [123]
208 Limestone fern
(Gymnocarpium robertianum)
160 Tetraploid (2n = 4x = 160) [124]
209 African baobab
(Adansonia digitata)
168 Also known as the "tree of life". 2n = 4x = 168 [125]
210 Northern lampreys
(Petromyzontidae)
174 [126]
211 Rattlesnake fern
(Botrypus virginianus)
184 [127]
212 Red king crab
(Paralithodes camtschaticus)
208
213 Field horsetail
(Equisetum arvense)
216
214 Agrodiaetus butterfly
(Agrodiaetus shahrami)
268 This insect has one of the highest chromosome numbers among all animals. [128]
215 Black mulberry
(Morus nigra)
308 Highest ploidy among plants, 22-ploid (2n = 22x = 308)[129] [130]
216 Atlas blue
(Polyommatus atlantica)
448–452 2n = c. 448–452. Highest number of chromosomes in the non-polyploid eukaryotic organisms.[131] [131]
217 Adders-tongue
(Ophioglossum reticulatum)
1260 n=120–720 with a high degree of polyploidization.[132] Ophioglossum reticulatum n=720 in hexaploid species, 2n=1260 in decaploid species.[133]
218 Ciliated protozoa
(Tetrahymena thermophila)
10 (in micronucleus) 50x = 12,500 (in macronucleus, except minichromosomes)
10,000x = 10,000 (macronuclear minichromosomes)[134]
219 Ciliated protozoa
(Sterkiella histriomuscorum)
16000[135] Macronuclear "nanochromosomes"; ampliploid. MAC chromosomes × 1900 ploidy level = 2.964 × 107 chromosomes [136][137][138]

References

  1. ^ Concise Oxford Dictionary
  2. ^ White MJ (1973). The chromosomes (6th ed.). London: Chapman & Hall. p. 28.
  3. ^ Stebbins GL (1950). "Chapter XII: The Karyotype". Variation and evolution in plants. Columbia University Press.
  4. ^ King RC, Stansfield WD, Mulligan PK (2006). A dictionary of genetics (7th ed.). Oxford University Press. p. 242.
  5. ^ a b Crosland MW, Crozier RH (March 1986). "Myrmecia pilosula, an Ant with Only One Pair of Chromosomes". Science. 231 (4743): 1278. Bibcode:1986Sci...231.1278C. doi:10.1126/science.231.4743.1278. PMID 17839565. S2CID 25465053.
  6. ^ a b Helle W, Bolland HR, Gutierrez J (1972). "Minimal chromosome number in false spider mites (Tenuipalpidae)". Experientia. 28 (6): 707. doi:10.1007/BF01944992. S2CID 29547273.
  7. ^ Michailova P (1976). "Cytotaxonomical Diagnostics of Species from the Genus Cricotopus (Chironomidae, Diptera)". Caryologia. 29 (3): 291–306. doi:10.1080/00087114.1976.10796669.
  8. ^ Körner WH (1952). "Untersuchungen über die Gehäusebildung bei Appendicularien (Oikopleura dioica Fol)". Zeitschrift für Morphologie und Ökologie der Tiere. 41 (1): 1–53. doi:10.1007/BF00407623. JSTOR 43261846. S2CID 19101198.
  9. ^ a b Giannelli F, Hall JC, Dunlap JC, Friedmann T (1999). Advances in Genetics, Volume 41 (Advances in Genetics). Boston: Academic Press. p. 2. ISBN 978-0-12-017641-0.
  10. ^ Wang W, Lan H (September 2000). "Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny". Molecular Biology and Evolution. 17 (9): 1326–33. doi:10.1093/oxfordjournals.molbev.a026416. PMID 10958849.
  11. ^ Wurster DH, Benirschke K (June 1970). "Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number". Science. 168 (3937): 1364–6. Bibcode:1970Sci...168.1364W. doi:10.1126/science.168.3937.1364. PMID 5444269. S2CID 45371297.
  12. ^ "Drosophila Genome Project". National Center for Biotechnology Information. Retrieved 2009-04-14.
  13. ^ Zadesenets KS, Vizoso DB, Schlatter A, Konopatskaia ID, Berezikov E, Schärer L, Rubtsov NB (2016). "Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology". PLOS ONE. 11 (10): e0164915. Bibcode:2016PLoSO..1164915Z. doi:10.1371/journal.pone.0164915. PMC 5068713. PMID 27755577.
  14. ^ Shimamura, Masaki (2016). "Marchantia polymorpha: Taxonomy, Phylogeny and Morphology of a Model System". Plant & Cell Physiology. 57 (2): 230–256. doi:10.1093/pcp/pcv192. PMID 26657892.
  15. ^ Toder R, O'Neill RJ, Wienberg J, O'Brien PC, Voullaire L, Marshall-Graves JA (June 1997). "Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system". Mammalian Genome. 8 (6): 418–22. doi:10.1007/s003359900459. PMID 9166586. S2CID 12515691.
  16. ^ Leach CR, Donald TM, Franks TK, Spiniello SS, Hanrahan CF, Timmis JN (July 1995). "Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica". Chromosoma. 103 (10): 708–14. doi:10.1007/BF00344232. PMID 7664618. S2CID 12246995.
  17. ^ Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, Onodera Y (June 2015). "Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species". G3. 5 (8): 1663–73. doi:10.1534/g3.115.018671. PMC 4528323. PMID 26048564.
  18. ^ Patlolla AK, Berry A, May L, Tchounwou PB (May 2012). "Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles". International Journal of Environmental Research and Public Health. 9 (5): 1649–62. doi:10.3390/ijerph9051649. PMC 3386578. PMID 22754463.
  19. ^ a b Sbilordo SH, Martin OY, Ward PI (2010). "The karyotype of the yellow dung fly, Scathophaga stercoraria, a model organism in studies of sexual selection". Journal of Insect Science. 10 (118): 1–11. doi:10.1673/031.010.11801. PMC 3016996. PMID 20874599.
  20. ^ "First of six chromosomes sequenced in Dictyostelium discoideum". Genome News Network. Retrieved 2009-04-29.
  21. ^ Zhang Y, Cheng C, Li J, Yang S, Wang Y, Li Z, et al. (September 2015). "Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping". BMC Genomics. 16 (1): 730. doi:10.1186/s12864-015-1877-6. PMC 4583154. PMID 26407707.
  22. ^ a b c d e f g h i j k l m n o p q r Simmonds, NW, ed. (1976). Evolution of crop plants. New York: Longman. ISBN 978-0-582-44496-6.[page needed]
  23. ^ Schubert V, Ruban A, Houben A (2016). "Chromatin Ring Formation at Plant Centromeres". Frontiers in Plant Science. 7: 28. doi:10.3389/fpls.2016.00028. PMC 4753331. PMID 26913037.
  24. ^ a b Haque SM, Ghosh B (December 2013). "High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two years old field growing regenerated plants". Botanical Studies. 54 (1): 46. Bibcode:2013BotSt..54...46H. doi:10.1186/1999-3110-54-46. PMC 5430365. PMID 28510900.
  25. ^ Rofe RH (December 1978). "G-banded chromosomes and the evolution of macropodidae". Australian Mammalogy. 2: 50–63. doi:10.1071/AM78007. ISSN 0310-0049. S2CID 254728517.
  26. ^ Colombera D (1974). "Chromosome number within the class Ascidiacea". Marine Biology. 26 (1): 63–68. Bibcode:1974MarBi..26...63C. doi:10.1007/BF00389087. S2CID 84189212.
  27. ^ a b Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. (July 2009). "The genome of the blood fluke Schistosoma mansoni". Nature. 460 (7253): 352–8. Bibcode:2009Natur.460..352B. doi:10.1038/nature08160. PMC 2756445. PMID 19606141.
  28. ^ a b Nagaki K, Yamamoto M, Yamaji N, Mukai Y, Murata M (2012). "Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium". PLOS ONE. 7 (12): e51315. Bibcode:2012PLoSO...751315N. doi:10.1371/journal.pone.0051315. PMC 3517398. PMID 23236469.
  29. ^ a b Mounsey KE, Willis C, Burgess ST, Holt DC, McCarthy J, Fischer K (January 2012). "Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus". Parasites & Vectors. 5: 3. doi:10.1186/1756-3305-5-3. PMC 3274472. PMID 22214472.
  30. ^ a b Dunemann F, Schrader O, Budahn H, Houben A (2014). "Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.)". PLOS ONE. 9 (6): e98504. Bibcode:2014PLoSO...998504D. doi:10.1371/journal.pone.0098504. PMC 4041860. PMID 24887084.
  31. ^ Guerra M, Pedrosa A, Cornélio MT, Santos K, Soares Filho WD (1997). "Chromosome number and secondary constriction variation in 51 accessions of a citrus germplasm bank". Brazilian Journal of Genetics. 20 (3): 489–496. doi:10.1590/S0100-84551997000300021.
  32. ^ Hynniewta M, Malik SK, Rao SR (2011). "Karyological studies in ten species of Citrus(Linnaeus, 1753) (Rutaceae) of North-East India". Comparative Cytogenetics. 5 (4): 277–87. doi:10.3897/CompCytogen.v5i4.1796. PMC 3833788. PMID 24260635.
  33. ^ Souza, Margarete Magalhães, Telma N. Santana Pereira, and Maria Lúcia Carneiro Vieira. "Cytogenetic studies in some species of Passiflora L.(Passifloraceae): a review emphasizing Brazilian species." Brazilian Archives of Biology and Technology 51.2 (2008): 247–258. https://dx.doi.org/10.1590/S1516-89132008000200003
  34. ^ Nani TF, Cenzi G, Pereira DL, Davide LC, Techio VH (2015). "Ribosomal DNA in diploid and polyploid Setaria (Poaceae) species: number and distribution". Comparative Cytogenetics. 9 (4): 645–60. doi:10.3897/CompCytogen.v9i4.5456. PMC 4698577. PMID 26753080.
  35. ^ a b Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, et al. (April 2015). "A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis". Cytogenetic and Genome Research. 145 (3–4): 187–91. doi:10.1159/000381292. PMID 25871511. S2CID 207626597.
  36. ^ a b c Kondo K (May 1969). "Chromosome Numbers of Carnivorous Plants". Bulletin of the Torrey Botanical Club. 96 (3): 322–328. doi:10.2307/2483737. JSTOR 2483737.
  37. ^ da Silva RA, Souza G, Lemos LS, Lopes UV, Patrocínio NG, Alves RM, et al. (2017). "Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae)". PLOS ONE. 12 (2): e0170799. Bibcode:2017PLoSO..1270799D. doi:10.1371/journal.pone.0170799. PMC 5302445. PMID 28187131.
  38. ^ Oudjehih B, Abdellah B (2006). "Chromosome numbers of the 59 species of Eucalyptus L'Herit. (Myrtaceae)". Caryologia. 59 (3): 207–212. doi:10.1080/00087114.2006.10797916.
  39. ^ Balasaravanan T, Chezhian P, Kamalakannan R, Ghosh M, Yasodha R, Varghese M, Gurumurthi K (October 2005). "Determination of inter- and intra-species genetic relationships among six Eucalyptus species based on inter-simple sequence repeats (ISSR)". Tree Physiology. 25 (10): 1295–302. doi:10.1093/treephys/25.10.1295. PMID 16076778.
  40. ^ Biggers JD, Fritz HI, Hare WC, Mcfeely RA (June 1965). "Chromosomes of American Marsupials". Science. 148 (3677): 1602–3. Bibcode:1965Sci...148.1602B. doi:10.1126/science.148.3677.1602. PMID 14287602. S2CID 46617910.
  41. ^ Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, et al. (January 2015). "Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly". BMC Genomics. 16 (1): 4. doi:10.1186/s12864-014-1196-3. PMC 4316794. PMID 25612459.
  42. ^ Heiser CB, Whitaker TW (March 1948). "Chromosome number, polyploidy, and growth habit in California weeds". American Journal of Botany. 35 (3): 179–86. doi:10.2307/2438241. JSTOR 2438241. PMID 18909963.
  43. ^ Ivanova D, Vladimirov V (2007). "Chromosome numbers of some woody species from the Bulgarian flora" (PDF). Phytologia Balcanica. 13 (2): 205–207.
  44. ^ Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG, Machado ML, et al. (May 2007). "Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species". BMC Plant Biology. 7: 24. doi:10.1186/1471-2229-7-24. PMC 1899175. PMID 17517142.
  45. ^ Packham JR, Thomas PA, Atkinson MD, Degen T (2012). "Biological Flora of the British Isles:Fagus sylvatica". Journal of Ecology. 100 (6): 1557–1608. Bibcode:2012JEcol.100.1557P. doi:10.1111/j.1365-2745.2012.02017.x. S2CID 85095298.
  46. ^ Abrams L (1951). Illustrated Flora of the Pacific States. Volume 3. Stanford University Press. p. 866.
  47. ^ Stace C (1997). New Flora of the British Isles (Second ed.). Cambridge, UK. p. 1130.
  48. ^ Zaldoš V, Papeš D, Brown SC, Panaus O, Šiljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome, 41: 162–168.
  49. ^ Doležálková M, Sember A, Marec F, Ráb P, Plötner J, Choleva L (July 2016). "Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax?". BMC Genetics. 17 (1): 100. doi:10.1186/s12863-016-0408-z. PMC 4930623. PMID 27368375.
  50. ^ Zaleśna A, Choleva L, Ogielska M, Rábová M, Marec F, Ráb P (2011). "Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization". Cytogenetic and Genome Research. 134 (3): 206–12. doi:10.1159/000327716. PMID 21555873. S2CID 452336.
  51. ^ Keinath MC, Timoshevskiy VA, Timoshevskaya NY, Tsonis PA, Voss SR, Smith JJ (November 2015). "Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing". Scientific Reports. 5: 16413. Bibcode:2015NatSR...516413K. doi:10.1038/srep16413. PMC 4639759. PMID 26553646.
  52. ^ a b Sadílek D, Angus RB, Šťáhlavský F, Vilímová J (2016). "Comparison of different cytogenetic methods and tissue suitability for the study of chromosomes in Cimex lectularius (Heteroptera, Cimicidae)". Comparative Cytogenetics. 10 (4): 731–752. doi:10.3897/CompCytogen.v10i4.10681. PMC 5240521. PMID 28123691.
  53. ^ Achar KP (1986). "Analysis of male meiosis in seven species of Indian pill-millipede". Caryologia. 39 (39): 89–101. doi:10.1080/00087114.1986.10797770.
  54. ^ Huang L, Nesterenko A, Nie W, Wang J, Su W, Graphodatsky AS, Yang F (2008). "Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints". Cytogenetic and Genome Research. 122 (2): 132–8. doi:10.1159/000163090. PMID 19096208. S2CID 6674957.
  55. ^ Sola-Campoy PJ, Robles F, Schwarzacher T, Ruiz Rejón C, de la Herrán R, Navajas-Pérez R (2015). "The Molecular Cytogenetic Characterization of Pistachio (Pistacia vera L.) Suggests the Arrest of Recombination in the Largest Heteropycnotic Pair HC1". PLOS ONE. 10 (12): e0143861. Bibcode:2015PLoSO..1043861S. doi:10.1371/journal.pone.0143861. PMC 4669136. PMID 26633808.
  56. ^ Kim SR, Kwak W, Kim H, Caetano-Anolles K, Kim KY, Kim SB, et al. (January 2018). "Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae". GigaScience. 7 (1): 1–11. doi:10.1093/gigascience/gix113. PMC 5774507. PMID 29186418.
  57. ^ a b Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M (October 2009). "Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway". PLOS Biology. 7 (10): e1000222. doi:10.1371/journal.pbio.1000222. PMC 2758576. PMID 19841734.
  58. ^ Rubtsov, Nikolai B. (1 April 1998). "The Fox Gene Map". ILAR. 39 (2–3): 182–188. doi:10.1093/ilar.39.2-3.182. PMID 11528077.
  59. ^ Feng J, Liu Z, Cai X, Jan CC (January 2013). "Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones". G3. 3 (1): 31–40. doi:10.1534/g3.112.004846. PMC 3538341. PMID 23316437.
  60. ^ a b "Metapress – Discover More". 24 June 2016.
  61. ^ Giorgi D, Pandozy G, Farina A, Grosso V, Lucretti S, Gennaro A, et al. (2016). "First detailed karyo-morphological analysis and molecular cytological study of leafy cardoon and globe artichoke, two multi-use Asteraceae crops". Comparative Cytogenetics. 10 (3): 447–463. doi:10.3897/CompCytogen.v10i3.9469. PMC 5088355. PMID 27830052.
  62. ^ An F, Fan J, Li J, Li QX, Li K, Zhu W, et al. (2014). "Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes". PLOS ONE. 9 (4): e85991. Bibcode:2014PLoSO...985991A. doi:10.1371/journal.pone.0085991. PMC 3984080. PMID 24727655.
  63. ^ Perelman PL, Graphodatsky AS, Dragoo JW, Serdyukova NA, Stone G, Cavagna P, et al. (2008). "Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes". Chromosome Research. 16 (8): 1215–31. doi:10.1007/s10577-008-1270-2. PMID 19051045. S2CID 952184.
  64. ^ Dowling HG, Price RM (1988). "A proposed new genus for Elaphe subocularis and Elaphe rosaliae" (PDF). The Snake. 20 (1): 52–63. Archived from the original (PDF) on 29 October 2014.
  65. ^ Baker, R. J.; Bull, J. J.; Mengden, G. A. (1971). "Chromosomes ofElaphe subocularis (Reptilia: Serpentes), with the description of an in vivo technique for preparation of snake chromosomes". Experientia. 27 (10): 1228–1229. doi:10.1007/BF02286946.
  66. ^ The Jackson Laboratory Archived 2013-01-25 at the Wayback Machine: "Mice with chromosomal aberrations".
  67. ^ a b Milla SR, Isleib TG, Stalker HT (February 2005). "Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers". Genome. 48 (1): 1–11. doi:10.1139/g04-089. PMID 15729391.
  68. ^ Moore CM, Dunn BG, McMahan CA, Lane MA, Roth GS, Ingram DK, Mattison JA (March 2007). "Effects of calorie restriction on chromosomal stability in rhesus monkeys (Macaca mulatta)". Age. 29 (1): 15–28. doi:10.1007/s11357-006-9016-6. PMC 2267682. PMID 19424827.
  69. ^ "Rnor_6.0 - Assembly - NCBI". www.ncbi.nlm.nih.gov.
  70. ^ Diupotex-Chong ME, Ocaña-Luna A, Sánchez-Ramírez M (July 2009). "Chromosome analysis of Linné, 1758 (Scyphozoa: Ulmaridae), southern Gulf of Mexico". Marine Biology Research. 5 (4): 399–403. doi:10.1080/17451000802534907. S2CID 84514554.
  71. ^ Geleta M, Herrera I, Monzón A, Bryngelsson T (2012). "Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers". TheScientificWorldJournal. 2012: 939820. doi:10.1100/2012/939820. PMC 3373144. PMID 22701376.
  72. ^ "Human Genome Project". National Center for Biotechnology Information. Retrieved 2009-04-29.
  73. ^ Gallagher, D. S.; Davis, S. K.; De Donato, M.; Burzlaff, J. D.; Womack, J. E.; Taylor, J. F.; Kumamoto, A. T. (November 1998). "A karyotypic analysis of nilgai, Boselaphus tragocamelus (Artiodactyla: Bovidae)". Chromosome Research. 6 (7): 505–513. doi:10.1023/a:1009268917856. ISSN 0967-3849. PMID 9886771. S2CID 21120780.
  74. ^ Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, et al. (November 2016). "The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion". eLife. 5. doi:10.7554/eLife.20062. PMC 5111886. PMID 27849518.
  75. ^ a b Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, et al. (May 2014). "The tobacco genome sequence and its comparison with those of tomato and potato". Nature Communications. 5: 3833. Bibcode:2014NatCo...5.3833S. doi:10.1038/ncomms4833. PMC 4024737. PMID 24807620.
  76. ^ a b Machida-Hirano R (March 2015). "Diversity of potato genetic resources". Breeding Science. 65 (1): 26–40. doi:10.1270/jsbbs.65.26. PMC 4374561. PMID 25931978.
  77. ^ Robinson TJ, Yang F, Harrison WR (2002). "Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha)". Cytogenetic and Genome Research. 96 (1–4): 223–7. doi:10.1159/000063034. PMID 12438803. S2CID 19327437.
  78. ^ "4.W4". Rabbits, Hares and Pikas. Status Survey and Conservation Action Plan. pp. 61–94. Archived from the original on 2011-05-05.
  79. ^ Young WJ, Merz T, Ferguson-Smith MA, Johnston AW (June 1960). "Chromosome number of the chimpanzee, Pan troglodytes". Science. 131 (3414): 1672–3. Bibcode:1960Sci...131.1672Y. doi:10.1126/science.131.3414.1672. PMID 13846659. S2CID 36235641.
  80. ^ Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, et al. (December 2000). "Zebrafish comparative genomics and the origins of vertebrate chromosomes". Genome Research. 10 (12): 1890–902. doi:10.1101/gr.164800. PMID 11116085.
  81. ^ Anna Grzesiakowska; Przemysław Baran,2; Marta Kuchta-Gładysz; Olga Szeleszczuk1 (2019). "Cytogenetic Karyotype Analysis in Selected Species of the Erinaceidae Family". Journal of Veterinary Research. 63 (3): 353–358. doi:10.2478/jvetres-2019-0041. PMC 6749745. PMID 31572815.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  82. ^ Anna Grzesiakowska; Przemysław Baran; Marta Kuchta-Gładysz; Olga Szeleszczuk1 (2019). "Cytogenetic Karyotype Analysis in Selected Species of the Erinaceidae Family". Journal of Veterinary Research. 63 (3): 353–358. doi:10.2478/jvetres-2019-0041. PMC 6749745. PMID 31572815.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  83. ^ Brien S (2006). Atlas of mammalian chromosomes. Hoboken, NJ: Wiley-Liss. p. 2. ISBN 978-0-471-35015-6.
  84. ^ Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, et al. (May 2008). "Genome analysis of the platypus reveals unique signatures of evolution". Nature. 453 (7192): 175–83. Bibcode:2008Natur.453..175W. doi:10.1038/nature06936. PMC 2803040. PMID 18464734.
  85. ^ a b Chen H, Khan MK, Zhou Z, Wang X, Cai X, Ilyas MK, et al. (December 2015). "A high-density SSR genetic map constructed from a F2 population of Gossypium hirsutum and Gossypium darwinii". Gene. 574 (2): 273–86. doi:10.1016/j.gene.2015.08.022. PMID 26275937.
  86. ^ "Hyrax: The Little Brother of the Elephant", Wildlife on One, BBC TV.
  87. ^ O'Brien SJ, Meninger JC, Nash WG (2006). Atlas of Mammalian Chromosomes. John Wiley & sons. p. 78. ISBN 978-0-471-35015-6.
  88. ^ a b Mäkinen A, Kuokkanen MT, Valtonen M (1986). "A chromosome-banding study in the Finnish and the Japanese raccoon dog". Hereditas. 105 (1): 97–105. doi:10.1111/j.1601-5223.1986.tb00647.x. PMID 3793521.
  89. ^ Ostrander EA (1 January 2012). Genetics of the Dog. CABI. pp. 250–. ISBN 978-1-84593-941-0.
  90. ^ Barnabe RC, Guimarães MA, Oliveira CA, Barnabe AH (2002). "Analysis of some normal parameters of the spermiogram of captive capuchin monkeys (Cebus apella Linnaeus, 1758 )" (PDF). Brazilian Journal of Veterinary Research and Animal Science. 39 (6). doi:10.1590/S1413-95962002000600010.
  91. ^ Peigler, Richard S. (1993). "Wild Silks of the World". American Entomologist. 39 (3): 151–162. doi:10.1093/ae/39.3.151.
  92. ^ Yoshido A, Yasukochi Y, Sahara K (June 2011). "Samia cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera" (PDF). Insect Biochemistry and Molecular Biology. 41 (6): 370–7. Bibcode:2011IBMB...41..370Y. doi:10.1016/j.ibmb.2011.02.005. hdl:2115/45607. PMID 21396446. S2CID 38794541.
  93. ^ Mahendran B, Ghosh SK, Kundu SC (April 2006). "Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes". Journal of Genetics. 85 (1): 31–8. doi:10.1007/bf02728967. PMID 16809837. S2CID 11733404.
  94. ^ Yoshido A, Bando H, Yasukochi Y, Sahara K (June 2005). "The Bombyx mori karyotype and the assignment of linkage groups". Genetics. 170 (2): 675–85. doi:10.1534/genetics.104.040352. PMC 1450397. PMID 15802516.
  95. ^ a b Liu B, Davis TM (November 2011). "Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae)". BMC Plant Biology. 11: 157. doi:10.1186/1471-2229-11-157. PMC 3261831. PMID 22074487.
  96. ^ Claro, Françoise; Hayes, Hélène; Cribiu, Edmond Paul (November 1993). "The R- and G-Banded Karyotypes of the Sable Antelope (Hippotragus niger)". Journal of Heredity. 84 (6): 481–484. doi:10.1093/oxfordjournals.jhered.a111376. PMID 8270772. Retrieved 6 March 2021.
  97. ^ Seabury CM, Dowd SE, Seabury PM, Raudsepp T, Brightsmith DJ, Liboriussen P, et al. (2013). "A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao)". PLOS ONE. 8 (5): e62415. Bibcode:2013PLoSO...862415S. doi:10.1371/journal.pone.0062415. PMC 3648530. PMID 23667475.
  98. ^ a b c d e f g Sillero-Zubiri C, Hoffmann MJ, Mech D (2004). Canids: Foxes, Wolves, Jackals and Dogs: Status Survey and Conservation Action Plan. World Conservation Union. ISBN 978-2-8317-0786-0.[page needed]
  99. ^ Rens W, O'Brien PC, Grützner F, Clarke O, Graphodatskaya D, Tsend-Ayush E, et al. (2007). "The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z". Genome Biology. 8 (11): R243. doi:10.1186/gb-2007-8-11-r243. PMC 2258203. PMID 18021405.
  100. ^ Svartman M, Stone G, Stanyon R (July 2006). "The ancestral eutherian karyotype is present in Xenarthra". PLOS Genetics. 2 (7): e109. doi:10.1371/journal.pgen.0020109. PMC 1513266. PMID 16848642.
  101. ^ de Oliveira EH, Tagliarini MM, dos Santos MS, O'Brien PC, Ferguson-Smith MA (2013). "Chromosome painting in three species of buteoninae: a cytogenetic signature reinforces the monophyly of South American species". PLOS ONE. 8 (7): e70071. Bibcode:2013PLoSO...870071D. doi:10.1371/journal.pone.0070071. PMC 3724671. PMID 23922908.
  102. ^ Smith HB (January 1927). "Chromosome Counts in the Varieties of SOLANUM TUBEROSUM and Allied Wild Species". Genetics. 12 (1): 84–92. doi:10.1093/genetics/12.1.84. PMC 1200928. PMID 17246516.
  103. ^ Li XL, Lin RS, Fung HL, Qi ZX, Song WQ, Chen RY (September 2001). "Chromosome numbers of some caespitose bamboos native in or introduced to China" 中国部分丛生竹类染色体数目报道 [Chromosome numbers of some caespitose bamboos native in or introduced to China]. Journal of Systematics and Evolution (in Chinese (China)). 39 (5): 433–442.
  104. ^ Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M (2003). "Comparative chromosome painting of chicken autosomal paints 1-9 in nine different bird species". Cytogenetic and Genome Research. 103 (1–2): 173–84. doi:10.1159/000076309. PMID 15004483. S2CID 23508684.
  105. ^ "Canis lupus familiaris (dog)". www.ncbi.nlm.nih.gov.
  106. ^ Maeda J, Yurkon CR, Fujisawa H, Kaneko M, Genet SC, Roybal EJ, et al. (2012). "Genomic instability and telomere fusion of canine osteosarcoma cells". PLOS ONE. 7 (8): e43355. Bibcode:2012PLoSO...743355M. doi:10.1371/journal.pone.0043355. PMC 3420908. PMID 22916246.
  107. ^ Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. (December 2005). "Genome sequence, comparative analysis and haplotype structure of the domestic dog". Nature. 438 (7069): 803–19. Bibcode:2005Natur.438..803L. doi:10.1038/nature04338. PMID 16341006.
  108. ^ Aslam ML, Bastiaansen JW, Crooijmans RP, Vereijken A, Megens HJ, Groenen MA (November 2010). "A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the turkey and chicken genomes". BMC Genomics. 11: 647. doi:10.1186/1471-2164-11-647. PMC 3091770. PMID 21092123.
  109. ^ a b Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, et al. (April 2010). "Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes". BMC Genomics. 11: 261. doi:10.1186/1471-2164-11-261. PMC 2882929. PMID 20416060.
  110. ^ "Saccharum officinarum L. | Plants of the World Online | Kew Science". Retrieved 2017-07-02.
  111. ^ Henry RJ, Kole C (15 August 2010). Genetics, Genomics and Breeding of Sugarcane. CRC Press. p. 70. ISBN 978-1-4398-4860-9.
  112. ^ Ohno S, Stenius C, Christian LC, Becak W, Becak ML (August 1964). "Chromosomal uniformity in the avian subclass Carinatae". Chromosoma. 15 (3): 280–8. doi:10.1007/BF00321513. PMID 14196875. S2CID 12310455.
  113. ^ Roslik, G.V. and Kryukov A. (2001). A Karyological Study of Some Corvine Birds (Corvidae, Aves). Russian Journal of Genetics 37(7):796-806. DOI: 10.1023/A:1016703127516
  114. ^ Gregory, T.R. (2015). Animal Genome Size Database. http://www.genomesize.com/result_species.php?id=1701
  115. ^ Akbarzadeh, M.; Van Laere, K.; Leus, L.; De Riek, J.; Van Huylenbroeck, J.; Werbrouck, S. P.; Dhooghe, E. (2021). "Can Knowledge of Genetic Distances, Genome Sizes and Chromosome Numbers Support Breeding Programs in Hardy Geraniums?". Genes. 12 (5): 730. doi:10.3390/genes12050730. PMC 8152959. PMID 34068148.
  116. ^ a b Schmid M, Fernández-Badillo A, Feichtinger W, Steinlein C, Roman JI (1988). "On the highest chromosome number in mammals". Cytogenetics and Cell Genetics. 49 (4): 305–8. doi:10.1159/000132683. PMID 3073914.
  117. ^ Hosseini SJ, Elahi E, Raie RM (2004). "The Chromosome Number of the Persian Gulf Shrimp Penaeus semisulcatus". Iranian Int. J. Sci. 5 (1): 13–23.
  118. ^ Spoz A, Boron A, Porycka K, Karolewska M, Ito D, Abe S, et al. (2014). "Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes". Comparative Cytogenetics. 8 (3): 233–48. doi:10.3897/CompCytogen.v8i3.7718. PMC 4205492. PMID 25349674.
  119. ^ Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Köhler N (September 1999). "Discovery of tetraploidy in a mammal". Nature. 401 (6751): 341. Bibcode:1999Natur.401..341G. doi:10.1038/43815. PMID 10517628. S2CID 1808633.
  120. ^ Gallardo MH, González CA, Cebrián I (August 2006). "Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae)". Genomics. 88 (2): 214–21. doi:10.1016/j.ygeno.2006.02.010. PMID 16580173.
  121. ^ Contreras LC, Torres-Mura JC, Spotorno AE (May 1990). "The largest known chromosome number for a mammal, in a South American desert rodent". Experientia. 46 (5): 506–8. doi:10.1007/BF01954248. PMID 2347403. S2CID 33553988.
  122. ^ Maneechot N, Yano CF, Bertollo LA, Getlekha N, Molina WF, Ditcharoen S, et al. (2016). "Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes)". Molecular Cytogenetics. 9: 4. doi:10.1186/s13039-016-0215-2. PMC 4719708. PMID 26793275.
  123. ^ Symonová R, Havelka M, Amemiya CT, Howell WM, Kořínková T, Flajšhans M, et al. (March 2017). "Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula)". BMC Genetics. 18 (1): 19. doi:10.1186/s12863-017-0484-8. PMC 5335500. PMID 28253860.
  124. ^ "Chromosome numbers of Polish ferns". researchgate.net.
  125. ^ Islam-Faridi N, Sakhanokho HF, Dana Nelson C (August 2020). "New chromosome number and cyto-molecular characterization of the African Baobab (Adansonia digitata L.) - "The Tree of Life"". Scientific Reports. 10 (1): 13174. Bibcode:2020NatSR..1013174I. doi:10.1038/s41598-020-68697-6. PMC 7413363. PMID 32764541.
  126. ^ Eschmeyer WM. "Family Petromyzontidae – Northern lampreys".
  127. ^ Flora of North America Editorial Committee (1993). Flora of North America. Missouri Botanical Garden, St. Louis.
  128. ^ Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE (July 2005). "Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies". Nature. 436 (7049): 385–9. Bibcode:2005Natur.436..385L. doi:10.1038/nature03704. PMID 16034417. S2CID 4431492.
  129. ^ "Morus nigra (black mulberry)". www.cabi.org. Retrieved 2020-08-29.
  130. ^ Zeng Q, Chen H, Zhang C, Han M, Li T, Qi X, et al. (2015). "Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny". PLOS ONE. 10 (8): e0135411. Bibcode:2015PLoSO..1035411Z. doi:10.1371/journal.pone.0135411. PMC 4534381. PMID 26266951.
  131. ^ a b Lukhtanov VA (2015). "The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms". Comparative Cytogenetics. 9 (4): 683–90. doi:10.3897/CompCytogen.v9i4.5760. PMC 4698580. PMID 26753083.
  132. ^ Lukhtanov VA (2015-07-10). "The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms". Comparative Cytogenetics. 9 (4): 683–90. doi:10.3897/compcytogen.v9i4.5760. PMC 4698580. PMID 26753083.
  133. ^ Sinha BM, Srivastava DP, Jha J (1979). "Occurrence of Various Cytotypes of Ophioglossum ReticulatumL. In a Population from N. E. India". Caryologia. 32 (2): 135–146. doi:10.1080/00087114.1979.10796781.
  134. ^ Mochizuki K (2010). "DNA rearrangements directed by non-coding RNAs in ciliates". Wiley Interdisciplinary Reviews. RNA. 1 (3): 376–87. doi:10.1002/wrna.34. PMC 3746294. PMID 21956937.
  135. ^ Miller, Greg (17 September 2014). "This Bizarre Organism Builds Itself a New Genome Every Time It Has Sex". Wired. Retrieved 1 June 2021.
  136. ^ Kumar S, Kumari R (June 2015). "Origin, structure and function of millions of chromosomes present in the macronucleus of unicellular eukaryotic ciliate, Oxytricha trifallax: a model organism for transgenerationally programmed genome rearrangements". Journal of Genetics. 94 (2): 171–6. doi:10.1007/s12041-015-0504-2. PMID 26174664. S2CID 14181659.
  137. ^ Swart EC, Bracht JR, Magrini V, Minx P, Chen X, Zhou Y, et al. (2013-01-29). "The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes". PLOS Biology. 11 (1): e1001473. doi:10.1371/journal.pbio.1001473. PMC 3558436. PMID 23382650.
  138. ^ Yong E (6 February 2013). "You Have 46 Chromosomes. This Pond Creature Has 15,600". National Geographic. Archived from the original on February 8, 2013.
  139. ^ Avarello R, Pedicini A, Caiulo A, Zuffardi O, Fraccaro M (May 1992). "Evidence for an ancestral alphoid domain on the long arm of human chromosome 2". Human Genetics. 89 (2): 247–9. doi:10.1007/BF00217134. PMID 1587535. S2CID 1441285.

Further reading