LDMOS: Difference between revisions
Citation bot (talk | contribs) Alter: authors, pages, journal. Add: bibcode, doi. Formatted dashes. | You can use this bot yourself. Report bugs here. | Suggested by Headbomb | All pages linked from cached copy of Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | via #UCB_webform_linked 290/589 |
No edit summary Tags: Mobile edit Mobile web edit |
||
(12 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Double-diffused MOSFET}} |
{{short description|Double-diffused MOSFET}} |
||
'''LDMOS''' ('''laterally-diffused metal-oxide semiconductor''')<ref name="ref1">[https://dx.doi.org/10.1109/LED.2014.2353301 A. Elhami Khorasani, IEEE Electron Dev. Lett., vol. 35, pp. 1079-1081, 2014]</ref> is a planar double-diffused [[MOSFET]] (metal–oxide–semiconductor field-effect transistor) used in [[amplifiers]], including [[microwave power]] amplifiers, [[RF power amplifier]]s and [[audio power amplifier]]s. These transistors are often fabricated on p/p<sup>+</sup> silicon epitaxial layers. The fabrication of LDMOS devices mostly involves various ion-implantation and subsequent annealing cycles.<ref name="ref1"/> As an example, |
'''LDMOS''' ('''laterally-diffused metal-oxide semiconductor''')<ref name="ref1">[https://dx.doi.org/10.1109/LED.2014.2353301 A. Elhami Khorasani, IEEE Electron Dev. Lett., vol. 35, pp. 1079-1081, 2014]</ref> is a planar double-diffused [[MOSFET]] (metal–oxide–semiconductor field-effect transistor) used in [[amplifiers]], including [[microwave power]] amplifiers, [[RF power amplifier]]s and [[audio power amplifier]]s. These transistors are often fabricated on p/p<sup>+</sup> silicon epitaxial layers. The fabrication of LDMOS devices mostly involves various ion-implantation and subsequent annealing cycles.<ref name="ref1"/> As an example, the drift region of this [[power MOSFET]] is fabricated using up to three ion implantation sequences in order to achieve the appropriate doping profile needed to withstand high electric fields. |
||
The [[silicon]]-based RF LDMOS ([[radio-frequency]] LDMOS) is the most widely used RF power amplifier in [[mobile network]]s,<ref name="Baliga2005"/><ref name="Asif"/><ref name="Theeuwen"/> enabling the majority of the world's [[mobile telephony|cellular voice]] and [[data traffic]].<ref name="NXP-LDMOS"/> LDMOS devices are widely used in RF power amplifiers for base-stations as the requirement is for high output power with a corresponding drain to source [[breakdown voltage]] usually above 60 [[volt]]s.<ref>{{cite conference|last=van Rijs|first=F.|title=Status and trends of silicon LDMOS base station PA technologies to go beyond 2.5 GHz applications| |
The [[silicon]]-based RF LDMOS ([[radio-frequency]] LDMOS) is the most widely used RF power amplifier in [[mobile network]]s,<ref name="Baliga2005">{{cite book |last1=Baliga |first1=Bantval Jayant |url=https://books.google.com/books?id=StJpDQAAQBAJ&pg=PA1 |title=Silicon RF Power MOSFETS |date=2005 |publisher=[[World Scientific]] |isbn=9789812561213 |pages=1–2 |author1-link=B. Jayant Baliga}}</ref><ref name="Asif">{{cite book |last1=Asif |first1=Saad |url=https://books.google.com/books?id=yg1mDwAAQBAJ&pg=PT134 |title=5G Mobile Communications: Concepts and Technologies |date=2018 |publisher=[[CRC Press]] |isbn=9780429881343 |page=134}}</ref><ref name="Theeuwen">{{cite journal |last1=Theeuwen |first1=S. J. C. H. |last2=Qureshi |first2=J. H. |date=June 2012 |title=LDMOS Technology for RF Power Amplifiers |url=https://www.ampleon.com/documents/published-paper/AMP-PP-2017-0503.pdf |journal=IEEE Transactions on Microwave Theory and Techniques |volume=60 |issue=6 |pages=1755–1763 |bibcode=2012ITMTT..60.1755T |doi=10.1109/TMTT.2012.2193141 |issn=1557-9670 |s2cid=7695809}}</ref> enabling the majority of the world's [[mobile telephony|cellular voice]] and [[data traffic]].<ref name="NXP-LDMOS">{{cite web |title=LDMOS Products and Solutions |url=https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol |access-date=4 December 2019 |website=[[NXP Semiconductors]]}}</ref> LDMOS devices are widely used in RF power amplifiers for base-stations as the requirement is for high output power with a corresponding drain to source [[breakdown voltage]] usually above 60 [[volt]]s.<ref>{{cite conference|last=van Rijs|first=F.|title=Status and trends of silicon LDMOS base station PA technologies to go beyond 2.5 GHz applications|book-title =Radio and Wireless Symposium, 2008 IEEE|year=2008|pages=69–72|doi=10.1109/RWS.2008.4463430|place=Orlando, FL}}</ref> Compared to other devices such as [[GaAs]] FETs they show a lower maximum power gain frequency. |
||
Manufacturers of LDMOS devices and foundries offering LDMOS technologies include [[TSMC]], [http://www.lfoundry.com/en LFoundry], [[ |
Manufacturers of LDMOS devices and foundries offering LDMOS technologies include , [[Tower Semiconductor]], [[TSMC]], [http://www.lfoundry.com/en LFoundry], [[SAMSUNG]], [[GLOBALFOUNDRIES]], [[Vanguard International Semiconductor Corporation]], [[STMicroelectronics]], [[Infineon Technologies]], [[RF Micro Devices|RFMD]], [[NXP Semiconductors]] (including former [[Freescale Semiconductor]]), [[Semiconductor Manufacturing International Corporation|SMIC]], MK Semiconductors, Polyfet and [[Ampleon]]. |
||
== |
==Photo Gallery== |
||
{{Gallery |
|||
DMOS (double-diffused MOSFET) was reported in the 1960s.<ref>{{cite journal | author=RE Harris | title=Double Diffused MOS Transistor|journal=International Electron Devices Meeting, IEEE |date=1967|page=40}}</ref> DMOS is a [[MOSFET]] made using a [[Diffused_junction_transistor#Double_diffusion|double diffusion proces]]. Laterally-double diffused MOSFET (LDMOS) was reported in 1969 by Tarui et al of the [[Electrotechnical Laboratory]] (ETL).<ref>{{cite journal |last1=Tarui |first1=Y. |last2=Hayashi |first2=Y. |last3=Sekigawa |first3=Toshihiro |title=Diffusion Self-Aligned MOST; A New Approach for High Speed Device |journal=Proceedings of the 1st Conference on Solid State Devices|date=September 1969 |doi=10.7567/SSDM.1969.4-1 |s2cid=184290914 |url=https://www.semanticscholar.org/paper/Diffusion-Selfaligned-MOST%3B-A-New-Approach-for-High-Tarui-Hayashi/c4ad0fa7b03e080cc027545f7152caa28633fa9a}}</ref><ref>{{cite journal |last1=McLintock |first1=G. A. |last2=Thomas |first2=R. E. |title=Modelling of the double-diffused MOST's with self-aligned gates |journal=1972 International Electron Devices Meeting |date=December 1972 |pages=24–26 |doi=10.1109/IEDM.1972.249241}}</ref> |
|||
|title=Various RF LDMOS transistors |
|||
|width=160 | height=170 |
|||
Hitachi was the only LDMOS manufacturer between 1977 and 1983, during which time LDMOS was used in [[audio power amplifier]]s from manufacturers such as [[HH Electronics]] (V-series) and [[Ashly Audio]], and were used for music, [[high-fidelity]] (hi-fi) equipment and [[public address system]]s.<ref name="Duncan177">{{cite book |last1=Duncan |first1=Ben |title=High Performance Audio Power Amplifiers |date=1996 |publisher=[[Elsevier]] |isbn=9780080508047 |pages=[https://archive.org/details/highperfomanceau0000dunc/page/177 177-8, 406] |url=https://archive.org/details/highperfomanceau0000dunc/page/177 }}</ref> |
|||
|align=center |
|||
|File:BLF2045.jpg |
|||
=== RF LDMOS === |
|||
|BLF2045 silicon die. RF LDMOS 26 V 180 mA 2 GHz 10 dB 30 W SOT467C. Designed for broadband operation (1800 to 2200 MHz). |
|||
LDMOS for RF applications was introduced in the early 1970s by Cauge et al.<ref>{{cite journal | authors=T.P. Cauge;J. Kocsis | title=A double-diffused MOS transistor with microwave gain and subnanosecond switching speeds | journal=IEEE Int. Electron Devices Meeting | year=1970}}</ref><ref>{{cite journal | authors=T.P. Cauge; J. Kocsis; H.J Sigg; G.D Vendelin | title=Double-diffused MOS transistor achieves microwave gain (MOS transistors for high digital logic speed and microwave performance, discussing fabrication by double diffusion | journal=Electronics | year=1971| volume=44 | pages=99–104}}</ref><ref>{{cite journal | authors=H.J Sigg; G.D. Vendelin; T.P. Cauge; J. Kocsis | title=D-MOS transistor for microwave applications|journal=IEEE Transactions on Electron Devices | year=1972 | volume=19 | issue=1 | pages=45–53| doi=10.1109/T-ED.1972.17370| bibcode=1972ITED...19...45S}}</ref> In the early 1990s, RF LDMOS ([[radio-frequency engineering|radio-frequency]] LDMOS) eventually displaced RF [[bipolar transistors]] as [[RF power amplifier]]s for [[cellular network]] infrastructure because RF LDMOS provided superior linearity, efficiency and gain along with lower costs.<ref name="NXP-Paper">{{cite web |title=White Paper {{ndash}} 50V RF LDMOS: An ideal RF power technology for ISM, broadcast and commercial aerospace applications |url=https://www.nxp.com/docs/en/white-paper/50VRFLDMOSWP.pdf |website=[[NXP Semiconductors]] |publisher=[[Freescale Semiconductor]] |date=September 2011 |accessdate=4 December 2019}}</ref><ref name="Theeuwen">{{cite journal |last1=Theeuwen |first1=S. J. C. H. |last2=Qureshi |first2=J. H. |title=LDMOS Technology for RF Power Amplifiers |journal=IEEE Transactions on Microwave Theory and Techniques |date=June 2012 |volume=60 |issue=6 |pages=1755–1763 |doi=10.1109/TMTT.2012.2193141 |bibcode=2012ITMTT..60.1755T |s2cid=7695809 |url=https://www.ampleon.com/documents/published-paper/AMP-PP-2017-0503.pdf |issn=1557-9670}}</ref> With the introduction of the [[2G]] digital [[mobile network]], LDMOS became the most widely used RF power amplifier technology in 2G and then [[3G]] mobile networks.<ref name="Baliga2005">{{cite book |last1=Baliga |first1=Bantval Jayant |author1-link=B. Jayant Baliga |title=Silicon RF Power MOSFETS |date=2005 |publisher=[[World Scientific]] |isbn=9789812561213 |pages=1–2 |url=https://books.google.com/books?id=StJpDQAAQBAJ&pg=PA1}}</ref> By the late 1990s, the RF LDMOS had become the dominant RF power amplifier in markets such as cellular [[base stations]], [[broadcasting]], [[radar]], and [[Industrial, Scientific and Medical band]] applications.<ref>{{cite book |last1=Baliga |first1=Bantval Jayant |author1-link=B. Jayant Baliga |title=Silicon RF Power MOSFETS |date=2005 |publisher=[[World Scientific]] |isbn=9789812561213 |page=71 |url=https://books.google.com/books?id=StJpDQAAQBAJ&pg=PA71}}</ref> LDMOS has since enabled the majority of the world's [[mobile telephony|cellular voice]] and [[data traffic]].<ref name="NXP-LDMOS">{{cite web |title=LDMOS Products and Solutions |url=https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol |website=[[NXP Semiconductors]] |accessdate=4 December 2019}}</ref> |
|||
| File:BLF861A.jpg |
|||
|BLF861A RF LDMOS transistor. RF LDMOS transistor 860 MHz 150W. |
|||
In the mid-2000s, RF power amplifiers based on single LDMOS devices suffered from relatively low efficiency when used in 3G and [[4G]] ([[LTE (telecommunication)|LTE]]) networks, due to the higher [[Crest factor|peak-to-average power]] of the [[Modulation|modulation schemes]] and [[CDMA]] and [[OFDM|OFDMA]] access techniques used in these communication systems. In 2006, the efficiency of LDMOS power amplifiers was boosted using typical efficiency enhancement techniques, such as [[Doherty amplifier|Doherty]] topologies or [[envelope tracking]].<ref name="DraxlerLanfranco2006">{{cite book|last1=Draxler|first1=P.|title=2006 IEEE MTT-S International Microwave Symposium Digest|last2=Lanfranco|first2=S.|last3=Kimball|first3=D.|last4=Hsia|first4=C.|last5=Jeong|first5=J.|last6=De Sluis|first6=J.|last7=Asbeck|first7=P.|chapter=High Efficiency Envelope Tracking LDMOS Power Amplifier for W-CDMA|year=2006|pages=1534–1537|doi=10.1109/MWSYM.2006.249605|isbn=978-0-7803-9541-1|s2cid=15083357}}</ref> |
|||
|File: BLF861A die photo.jpg |
|||
|BLF861A silicon die. RF LDMOS transistor 860 MHz 150W. Designed for UHF operation. |
|||
{{As of|2011}}, RF LDMOS is the dominant device technology used in high-power RF power amplifier applications for frequencies ranging from 1{{nbsp}}[[MHz]] to over 3.5{{nbsp}}[[GHz]], and is the dominant RF [[power device]] technology for cellular infrastructure.<ref name="NXP-Paper"/> {{As of|2012}}, RF LDMOS is the leading technology for a wide range of RF power applications.<ref name="Theeuwen"/> {{As of|2018}}, LDMOS is the ''de facto'' standard for power amplifiers in mobile networks such as [[4G]] and [[5G]].<ref name="Asif">{{cite book |last1=Asif |first1=Saad |title=5G Mobile Communications: Concepts and Technologies |date=2018 |publisher=[[CRC Press]] |isbn=9780429881343 |page=134 |url=https://books.google.com/books?id=yg1mDwAAQBAJ&pg=PT134}}</ref><ref name="NXP-LDMOS"/> |
|||
}} |
|||
==Applications== |
==Applications== |
||
Line 24: | Line 25: | ||
Common applications of LDMOS technology include the following. |
Common applications of LDMOS technology include the following. |
||
*[[Amplifiers]] — [[RF power amplifier]]s,<ref name="Baliga2005"/><ref name="Asif"/> [[audio power amplifier]]s,<ref name="Duncan177"/> [[class AB]]<ref name="Theeuwen"/> |
*[[Amplifiers]] — [[RF power amplifier]]s,<ref name="Baliga2005"/><ref name="Asif"/> [[audio power amplifier]]s,<ref name="Duncan177">{{cite book |last1=Duncan |first1=Ben |url=https://archive.org/details/highperfomanceau0000dunc/page/177 |title=High Performance Audio Power Amplifiers |date=1996 |publisher=[[Elsevier]] |isbn=9780080508047 |pages=[https://archive.org/details/highperfomanceau0000dunc/page/177 177-8, 406]}}</ref> [[class AB]]<ref name="Theeuwen"/> |
||
*[[Audio technology]] — [[loudspeakers]], [[high-fidelity]] (hi-fi) equipment, [[public announcement]] (PA) systems<ref name="Duncan177"/> |
*[[Audio technology]] — [[loudspeakers]], [[high-fidelity]] (hi-fi) equipment, [[public announcement]] (PA) systems<ref name="Duncan177"/> |
||
*[[Mobile devices]] — [[mobile phones]]<ref name="Asif"/> |
*[[Mobile devices]] — [[mobile phones]]<ref name="Asif"/> |
||
**[[Mobile network]]s — [[base stations]] and [[RF amplifier]]s<ref name="Asif" /> |
**[[Mobile network]]s — [[base stations]] and [[RF amplifier]]s<ref name="Asif" /> |
||
*[[Pulse (signal processing)|Pulse]] applications<ref name="Theeuwen"/> |
*[[Pulse (signal processing)|Pulse]] applications<ref name="Theeuwen"/> |
||
*[[Radio-frequency]] (RF) technology — [[RF engineering]] (RF engineering), [[RF power amplifier]]s<ref name="Baliga2005"/><ref name="Asif"/> |
*[[Radio-frequency]] (RF) technology — [[RF engineering]] (RF engineering), [[RF power amplifier]]s<ref name="Baliga2005"/><ref name="Asif"/><ref>{{Cite web |date=2019-10-27 |title=A 600W broadband HF amplifier using affordable LDMOS devices |url=https://qrpblog.com/2019/10/a-600w-broadband-hf-amplifier-using-affordable-ldmos-devices/ |access-date=2022-09-28 |website=QRPblog |language=en-GB}}</ref> |
||
*[[Wireless]] technology — [[wireless networks]] and [[digital networks]]<ref name="Baliga2005"/><ref name="Asif"/> |
*[[Wireless]] technology — [[wireless networks]] and [[digital networks]]<ref name="Baliga2005"/><ref name="Asif"/> |
||
Line 38: | Line 39: | ||
{{columns-list|colwidth=50em| |
{{columns-list|colwidth=50em| |
||
*[[Aerospace]] and [[defense technology]]<ref name="NXP-LDMOS"/> — [[military applications]]<ref name="L-Band">{{cite web |title=L-Band Radar |url=https://www.nxp.com/products/rf/rf-power/rf-aerospace-and-defense/l-band-radar:RF-AEROSPACE-DEFENSE-3 |website=[[NXP Semiconductors]] | |
*[[Aerospace]] and [[defense technology]]<ref name="NXP-LDMOS"/> — [[military applications]]<ref name="L-Band">{{cite web |title=L-Band Radar |url=https://www.nxp.com/products/rf/rf-power/rf-aerospace-and-defense/l-band-radar:RF-AEROSPACE-DEFENSE-3 |website=[[NXP Semiconductors]] |access-date=9 December 2019}}</ref> |
||
**[[Automatic dependent surveillance – broadcast]] (ADS–B)<ref name="Avionics"/> |
**[[Automatic dependent surveillance – broadcast]] (ADS–B)<ref name="Avionics"/> |
||
**[[Electronic warfare]]<ref name="NXP-Aerospace">{{cite web |title=RF Aerospace and Defense |url=https://www.nxp.com/products/rf/rf-power/rf-aerospace-and-defense:RF-AEROSPACE-DEFENSE-HOME |website=[[NXP Semiconductors]] | |
**[[Electronic warfare]]<ref name="NXP-Aerospace">{{cite web |title=RF Aerospace and Defense |url=https://www.nxp.com/products/rf/rf-power/rf-aerospace-and-defense:RF-AEROSPACE-DEFENSE-HOME |website=[[NXP Semiconductors]] |access-date=7 December 2019}}</ref><ref name="NXP-Warfare">{{cite web |title=Communications and Electronic Warfare |url=https://www.nxp.com/products/rf/rf-power/rf-aerospace-and-defense/comm-and-electronic-warfare:RF-AEROSPACE-DEFENSE-5 |website=[[NXP Semiconductors]] |access-date=9 December 2019}}</ref> — communications [[information warfare]], [[multi-band]] [[communication systems]]<ref name="NXP-Warfare"/> |
||
**[[Military technology]] — [[military communications]]<ref name="ST-Mobile"/> |
**[[Military technology]] — [[military communications]]<ref name="ST-Mobile"/> |
||
*[[Alarm]] and [[security]] — [[security alarm]]<ref name="Broadcast470"/> |
*[[Alarm]] and [[security]] — [[security alarm]]<ref name="Broadcast470"/> |
||
*[[Avionics]]<ref name="ST-LDMOS">{{cite web |title=RF LDMOS Transistors |url=https://www.st.com/en/radio-frequency-transistors/rf-ldmos-transistors.html |website=[[ST Microelectronics]] | |
*[[Avionics]]<ref name="ST-LDMOS">{{cite web |title=RF LDMOS Transistors |url=https://www.st.com/en/radio-frequency-transistors/rf-ldmos-transistors.html |website=[[ST Microelectronics]] |access-date=2 December 2019}}</ref><ref name="Avionics"/> — [[ADS-B]] [[transponders]], [[identification friend or foe]] (IFF) transponders, [[secondary surveillance radar]] (SSR), [[distance measuring equipment]] (DME), [[Mode S]] [[edge-localized mode]] (ELM), [[tactical data link]] (TDL),<ref name="Avionics"/> [[airband]]<ref name="IDDE">{{cite web |title=28/32V LDMOS: IDDE technology boost efficiency & robustness |url=https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/flyer/group0/37/ed/5c/aa/d6/c6/4a/71/flldmos11219_flyer/files/flldmos11219.pdf/jcr:content/translations/en.flldmos11219.pdf |website=[[ST Microelectronics]] |access-date=23 December 2019}}</ref> |
||
*[[Consumer electronics]]<ref name="Broadcast470"/> |
*[[Consumer electronics]]<ref name="Broadcast470"/> |
||
*[[Data logging]]<ref name="AN2048"/> |
*[[Data logging]]<ref name="AN2048"/> |
||
Line 49: | Line 50: | ||
*[[Fire detection]]<ref name="AN2048"/> |
*[[Fire detection]]<ref name="AN2048"/> |
||
*[[Gas detection]] — [[carbon monoxide detector]] (CO detector), [[methane]] detection<ref name="AN2048"/> |
*[[Gas detection]] — [[carbon monoxide detector]] (CO detector), [[methane]] detection<ref name="AN2048"/> |
||
*[[Industrial, Scientific and Medical band]] (ISM band) applications<ref name="ST-LDMOS"/><ref name="Theeuwen"/> — [[particle accelerators]],<ref name="ISM"/><ref name="NXP-ISM">{{cite web |title=700-1300 MHz – ISM |url=https://www.nxp.com/products/rf/rf-power/rf-ism-and-broadcast/700-1300-mhz-ism:RF-INDUST-3 |website=NXP Semiconductors | |
*[[Industrial, Scientific and Medical band]] (ISM band) applications<ref name="ST-LDMOS"/><ref name="Theeuwen"/> — [[particle accelerators]],<ref name="ISM"/><ref name="NXP-ISM">{{cite web |title=700-1300 MHz – ISM |url=https://www.nxp.com/products/rf/rf-power/rf-ism-and-broadcast/700-1300-mhz-ism:RF-INDUST-3 |website=NXP Semiconductors |access-date=12 December 2019}}</ref> [[welding]],<ref name="NXP-ISM"/> [[continuous wave]] (CW) applications, [[Linear system|linear]] applications,<ref name="ISM-2450">{{cite web |title=2450 MHz – ISM |url=https://www.nxp.com/products/rf/rf-power/rf-ism-and-broadcast/2450-mhz-ism:RF-INDUST-4 |website=NXP Semiconductors |access-date=12 December 2019}}</ref> [[Pulse (signal processing)|pulse]] applications<ref name="Avionics">{{cite web |title=Avionics |url=https://www.nxp.com/products/rf/rf-power/rf-aerospace-and-defense/avionics:RF-AEROSPACE-DEFENSE-2 |website=[[NXP Semiconductors]] |access-date=9 December 2019}}</ref><ref name="L-Band"/><ref name="ISM-2450"/> |
||
**[[Industrial technology]]<ref name="Broadcast470"/> |
**[[Industrial technology]]<ref name="Broadcast470"/> |
||
**[[Medical technology]]<ref name="ISM"/> — [[magnetic resonance imaging]] (MRI)<ref name="ISM"/><ref name="Broadcast600"/> |
**[[Medical technology]]<ref name="ISM"/> — [[magnetic resonance imaging]] (MRI)<ref name="ISM"/><ref name="Broadcast600"/> |
||
*[[Laser]] technology — laser drivers,<ref name="ISM">{{cite web |title=ISM & Broadcast |url=https://www.st.com/en/radio-frequency-transistors/ism-broadcast.html |website=[[ST Microelectronics]] | |
*[[Laser]] technology — laser drivers,<ref name="ISM">{{cite web |title=ISM & Broadcast |url=https://www.st.com/en/radio-frequency-transistors/ism-broadcast.html |website=[[ST Microelectronics]] |access-date=3 December 2019}}</ref> [[carbon dioxide laser]] (CO<sub>2</sub> laser)<ref name="Broadcast600"/> |
||
*[[Radio]] technology — [[commercial radio]], [[public safety]] radio, [[marine radio]],<ref name="ST-Mobile">{{cite web |title=Mobile & Wideband Comms |url=https://www.st.com/en/radio-frequency-transistors/mobile-wideband-comms.html |website=[[ST Microelectronics]] | |
*[[Radio]] technology — [[commercial radio]], [[public safety]] radio, [[marine radio]],<ref name="ST-Mobile">{{cite web |title=Mobile & Wideband Comms |url=https://www.st.com/en/radio-frequency-transistors/mobile-wideband-comms.html |website=[[ST Microelectronics]] |access-date=4 December 2019}}</ref> [[amateur radio]],<ref name="Broadcast600"/> [[portable radio]],<ref name="AN2048"/> [[wideband]],<ref name="IDCH">{{cite web |title=28/32 V LDMOS: New IDCH technology boosts RF power performance up to 4 GHz |url=https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/flyer/group0/f8/56/37/01/de/48/4d/60/flldmos1219_flyer/files/flldmos1219.pdf/jcr:content/translations/en.flldmos1219.pdf |website=ST Microelectronics |access-date=23 December 2019}}</ref> [[narrowband]]<ref name="S-Band"/> |
||
**[[Millimeter-wave]] (mmW) technology<ref>{{cite web |title=RF Cellular Infrastructure |url=https://www.nxp.com/products/rf/rf-power/rf-cellular-infrastructure:RF-CELLULAR-INFRASTRUCTURE |website=[[NXP Semiconductors]] | |
**[[Millimeter-wave]] (mmW) technology<ref>{{cite web |title=RF Cellular Infrastructure |url=https://www.nxp.com/products/rf/rf-power/rf-cellular-infrastructure:RF-CELLULAR-INFRASTRUCTURE |website=[[NXP Semiconductors]] |access-date=7 December 2019}}</ref> |
||
**[[Mobile radio]]<ref name="ST-LDMOS"/><ref name="NXP-Mobile">{{cite web |title=RF Mobile Radio |url=https://www.nxp.com/products/rf/rf-power/rf-mobile-radio:RF-MOBILE-RADIO |website=[[NXP Semiconductors]] | |
**[[Mobile radio]]<ref name="ST-LDMOS"/><ref name="NXP-Mobile">{{cite web |title=RF Mobile Radio |url=https://www.nxp.com/products/rf/rf-power/rf-mobile-radio:RF-MOBILE-RADIO |website=[[NXP Semiconductors]] |access-date=9 December 2019}}</ref> — [[professional mobile radio]], handheld [[transistor radio]], analog radio, [[digital radio]],<ref name="NXP-Mobile"/> [[digital mobile radio]] (DMR),<ref>{{cite web |title=UM0890: User manual {{ndash}} 2-stage RF power amplifier with LPF based on the PD85006L-E and STAP85050 RF power transistors |url=https://www.st.com/content/ccc/resource/technical/document/user_manual/74/4f/b1/0b/5a/8e/49/f5/CD00261794.pdf/files/CD00261794.pdf/jcr:content/translations/en.CD00261794.pdf |website=ST Microelectronics |access-date=23 December 2019}}</ref> [[land mobile radio system]] (LMRS),<ref name="IDDE"/> [[private mobile radio]] (PMR),<ref name="AN2048">{{cite web |title=AN2048: Application note {{ndash}} PD54008L-E: 8 W - 7 V LDMOS in PowerFLAT packages for wireless meter reading applications |url=https://www.st.com/content/ccc/resource/technical/document/application_note/dc/43/d5/6e/39/5b/45/90/CD00044466.pdf/files/CD00044466.pdf/jcr:content/translations/en.CD00044466.pdf |website=ST Microelectronics |access-date=23 December 2019}}</ref> [[Terrestrial Trunked Radio]] (TETRA)<ref name="NXP-Mobile"/><ref name="NXP-ISM"/> |
||
**[[Radar]] technology<ref name="ST-LDMOS"/><ref name="Theeuwen"/> — [[L band]],<ref name="NXP-Aerospace"/><ref name="L-Band"/> [[S band]]<ref name="NXP-Aerospace"/><ref name="S-Band">{{cite web |title=S-Band Radar |url=https://www.nxp.com/products/rf/rf-power/rf-aerospace-and-defense/s-band-radar:RF-AEROSPACE-DEFENSE-4 |website=NXP Semiconductors | |
**[[Radar]] technology<ref name="ST-LDMOS"/><ref name="Theeuwen"/> — [[L band]],<ref name="NXP-Aerospace"/><ref name="L-Band"/> [[S band]]<ref name="NXP-Aerospace"/><ref name="S-Band">{{cite web |title=S-Band Radar |url=https://www.nxp.com/products/rf/rf-power/rf-aerospace-and-defense/s-band-radar:RF-AEROSPACE-DEFENSE-4 |website=NXP Semiconductors |access-date=9 December 2019}}</ref> |
||
**[[Radio-frequency]] (RF) technology — [[radio-frequency identification]] (RFID)<ref name="ST-Mobile"/> RF [[Plasma (physics)|plasma]] generator<ref name="ISM"/> |
**[[Radio-frequency]] (RF) technology — [[radio-frequency identification]] (RFID)<ref name="ST-Mobile"/> RF [[Plasma (physics)|plasma]] generator<ref name="ISM"/> |
||
*[[RF energy]] technology<ref name="NXP-Cooking">{{cite web |title=915 MHz RF Cooking |url=https://www.nxp.com/products/rf/rf-power/rf-cooking/915-mhz-rf-cooking:RF-COOKING-1 |website=[[NXP Semiconductors]] | |
*[[RF energy]] technology<ref name="NXP-Cooking">{{cite web |title=915 MHz RF Cooking |url=https://www.nxp.com/products/rf/rf-power/rf-cooking/915-mhz-rf-cooking:RF-COOKING-1 |website=[[NXP Semiconductors]] |access-date=7 December 2019}}</ref><ref name="NXP-LDMOS"/><ref name="mwee">{{cite web |last1=Torres |first1=Victor |title=Why LDMOS is the best technology for RF energy |url=https://www.mwee.com/design-center/why-ldmos-best-technology-rf-energy |website=Microwave Engineering Europe |publisher=[[Ampleon]] |access-date=10 December 2019 |date=21 June 2018}}</ref> — [[lighting]], [[medical technology]], [[drying]], [[automotive electronics]]<ref name="mwee"/> |
||
**[[Heating]] — [[electric heating]],<ref name="Broadcast600">{{cite web |title=1-600 MHz – Broadcast and ISM |url=https://www.nxp.com/products/rf/rf-power/rf-ism-and-broadcast/1-600-mhz-broadcast-and-ism:RF-INDUST-1 |website=[[NXP Semiconductors]] | |
**[[Heating]] — [[electric heating]],<ref name="Broadcast600">{{cite web |title=1-600 MHz – Broadcast and ISM |url=https://www.nxp.com/products/rf/rf-power/rf-ism-and-broadcast/1-600-mhz-broadcast-and-ism:RF-INDUST-1 |website=[[NXP Semiconductors]] |access-date=12 December 2019}}</ref> [[RF heating]],<ref name="ISM"/><ref name="NXP-LDMOS"/> [[microwave heating]]<ref name="mwee"/> |
||
**[[Kitchen appliances]] — [[smart appliance]]s,<ref name="NXP-LDMOS"/> [[countertop]] appliances, [[cooking appliances]],<ref name="NXP-Defrosting">{{cite web |title=RF Defrosting |url=https://www.nxp.com/products/rf/rf-power/rf-defrosting:RF-DEFROSTING-HOME-PG |website=NXP Semiconductors | |
**[[Kitchen appliances]] — [[smart appliance]]s,<ref name="NXP-LDMOS"/> [[countertop]] appliances, [[cooking appliances]],<ref name="NXP-Defrosting">{{cite web |title=RF Defrosting |url=https://www.nxp.com/products/rf/rf-power/rf-defrosting:RF-DEFROSTING-HOME-PG |website=NXP Semiconductors |access-date=12 December 2019}}</ref> RF [[cooking]],<ref name="NXP-Cooking"/><ref name="ISM"/><ref name="NXP-LDMOS"/> [[microwave cooking]],<ref name="Theeuwen"/> RF [[Frozen food#Defrosting|defrosting]],<ref name="ISM"/><ref name="NXP-LDMOS"/><ref name="NXP-Defrosting"/> [[frozen food]] defrosting, [[freezers]], [[refrigerators]], [[ovens]]<ref name="NXP-Defrosting"/> |
||
**[[Smart lighting]] — RF lighting and [[wireless light switch]]<ref name="Theeuwen"/> |
**[[Smart lighting]] — RF lighting and [[wireless light switch]]<ref name="Theeuwen"/> |
||
*[[Telecommunications]]<ref name="ST-LDMOS"/> |
*[[Telecommunications]]<ref name="ST-LDMOS"/> |
||
**[[Broadband]]<ref name="Broadcast470">{{cite web |title=470-860 MHz – UHF Broadcast |url=https://www.nxp.com/products/rf/rf-power/rf-ism-and-broadcast/470-860-mhz-uhf-broadcast:RF-INDUST-2 |website=[[NXP Semiconductors]] | |
**[[Broadband]]<ref name="Broadcast470">{{cite web |title=470-860 MHz – UHF Broadcast |url=https://www.nxp.com/products/rf/rf-power/rf-ism-and-broadcast/470-860-mhz-uhf-broadcast:RF-INDUST-2 |website=[[NXP Semiconductors]] |access-date=12 December 2019}}</ref> — [[mobile broadband]]<ref name="NXP-Mobile"/> |
||
**[[Broadcasting]] — [[ultra high frequency]] (UHF) broadcasting,<ref name="Broadcast470"/> [[FM broadcasting]]<ref name="ISM"/><ref name="Theeuwen"/><ref name="Broadcast600"/> |
**[[Broadcasting]] — [[ultra high frequency]] (UHF) broadcasting,<ref name="Broadcast470"/> [[FM broadcasting]]<ref name="ISM"/><ref name="Theeuwen"/><ref name="Broadcast600"/> |
||
**[[Cellular network]]s<ref name="NXP-Paper"/><ref name="NXP-LDMOS"/> — [[2G]], [[3G]],<ref name="Baliga2005"/> [[International Mobile Telecommunications-2000]] (IMT),<ref name="IDCH"/> [[Long-Term Evolution]] (LTE),<ref name="5G-Cellular">{{cite web |title=RF Cellular Infrastructure |url=https://www.nxp.com/products/rf/rf-power/rf-cellular-infrastructure:RF-CELLULAR-INFRASTRUCTURE |website=[[NXP Semiconductors]] | |
**[[Cellular network]]s<ref name="NXP-Paper">{{cite web |title=White Paper {{ndash}} 50V RF LDMOS: An ideal RF power technology for ISM, broadcast and commercial aerospace applications |url=https://www.nxp.com/docs/en/white-paper/50VRFLDMOSWP.pdf |website=[[NXP Semiconductors]] |publisher=[[Freescale Semiconductor]] |date=September 2011 |access-date=4 December 2019}}</ref><ref name="NXP-LDMOS"/> — [[2G]], [[3G]],<ref name="Baliga2005"/> [[International Mobile Telecommunications-2000]] (IMT),<ref name="IDCH"/> [[Long-Term Evolution]] (LTE),<ref name="5G-Cellular">{{cite web |title=RF Cellular Infrastructure |url=https://www.nxp.com/products/rf/rf-power/rf-cellular-infrastructure:RF-CELLULAR-INFRASTRUCTURE |website=[[NXP Semiconductors]] |access-date=12 December 2019}}</ref> [[4G]],<ref name="Asif"/><ref name="NXP-LDMOS"/> [[5G]],<ref name="Asif"/><ref name="NXP-LDMOS"/><ref name="5G-Cellular"/> [[5G New Radio]] (5G NR)<ref>{{cite web |title=450 - 1000 MHz |url=https://www.nxp.com/products/rf/rf-power/rf-cellular-infrastructure/450-1000-mhz:RF-CELLULAR-1-AMPLIFIERS |website=[[NXP Semiconductors]] |access-date=12 December 2019}}</ref><ref>{{cite web |title=3400 - 4100 MHz |url=https://www.nxp.com/products/rf/rf-power/rf-cellular-infrastructure/3400-4100-mhz:RF-CELLULAR-4-AMPLIFIERS |website=NXP Semiconductors |access-date=12 December 2019}}</ref> |
||
**[[High frequency]] (HF) communication — [[very high frequency]] (VHF),<ref name="ISM"/><ref name="Theeuwen"/> [[ultra high frequency]] (UHF)<ref name="ST-Mobile"/><ref name="Theeuwen"/> |
**[[High frequency]] (HF) communication — [[very high frequency]] (VHF),<ref name="ISM"/><ref name="Theeuwen"/> [[ultra high frequency]] (UHF)<ref name="ST-Mobile"/><ref name="Theeuwen"/> |
||
**[[Mobile telephony|Cellular voice]] and [[data traffic]]<ref name="NXP-LDMOS"/> |
**[[Mobile telephony|Cellular voice]] and [[data traffic]]<ref name="NXP-LDMOS"/> |
||
Line 71: | Line 72: | ||
**[[Wideband]] and [[mobile communications]]<ref name="ST-Mobile"/> — [[base stations]],<ref name="ST-Mobile"/><ref name="Theeuwen"/><ref name="NXP-ISM"/> [[emergency position-indicating radiobeacon station]] (EPIRB), [[sonar buoys]], [[automatic meter reading]] (AMR)<ref name="ST-Mobile"/> |
**[[Wideband]] and [[mobile communications]]<ref name="ST-Mobile"/> — [[base stations]],<ref name="ST-Mobile"/><ref name="Theeuwen"/><ref name="NXP-ISM"/> [[emergency position-indicating radiobeacon station]] (EPIRB), [[sonar buoys]], [[automatic meter reading]] (AMR)<ref name="ST-Mobile"/> |
||
**[[Wireless]] technology — [[mobile communication]], [[satellite communication]],<ref name="ST-LDMOS"/> wireless data [[modems]],<ref name="ST-Mobile"/> [[WiMAX]]<ref name="Theeuwen"/> |
**[[Wireless]] technology — [[mobile communication]], [[satellite communication]],<ref name="ST-LDMOS"/> wireless data [[modems]],<ref name="ST-Mobile"/> [[WiMAX]]<ref name="Theeuwen"/> |
||
*[[Voltage standing wave ratio]] (VSWR) applications<ref>{{cite web |title=HF, VHF and UHF Radar |url=https://www.nxp.com/products/rf/rf-power/rf-aerospace-and-defense/hf-vhf-and-uhf-radar:RF-AEROSPACE-DEFENSE-1 |website=[[NXP Semiconductors]] | |
*[[Voltage standing wave ratio]] (VSWR) applications<ref>{{cite web |title=HF, VHF and UHF Radar |url=https://www.nxp.com/products/rf/rf-power/rf-aerospace-and-defense/hf-vhf-and-uhf-radar:RF-AEROSPACE-DEFENSE-1 |website=[[NXP Semiconductors]] |access-date=7 December 2019}}</ref><ref name="Broadcast600"/> — [[plasma etching]] and [[synchrotron]]s<ref name="Broadcast600"/> |
||
}} |
}} |
||
Line 92: | Line 93: | ||
[[Category:Transistor types]] |
[[Category:Transistor types]] |
||
[[Category:MOSFETs]] |
[[Category:MOSFETs]] |
||
[[Category:Japanese inventions]] |
Revision as of 10:35, 26 June 2024
LDMOS (laterally-diffused metal-oxide semiconductor)[1] is a planar double-diffused MOSFET (metal–oxide–semiconductor field-effect transistor) used in amplifiers, including microwave power amplifiers, RF power amplifiers and audio power amplifiers. These transistors are often fabricated on p/p+ silicon epitaxial layers. The fabrication of LDMOS devices mostly involves various ion-implantation and subsequent annealing cycles.[1] As an example, the drift region of this power MOSFET is fabricated using up to three ion implantation sequences in order to achieve the appropriate doping profile needed to withstand high electric fields.
The silicon-based RF LDMOS (radio-frequency LDMOS) is the most widely used RF power amplifier in mobile networks,[2][3][4] enabling the majority of the world's cellular voice and data traffic.[5] LDMOS devices are widely used in RF power amplifiers for base-stations as the requirement is for high output power with a corresponding drain to source breakdown voltage usually above 60 volts.[6] Compared to other devices such as GaAs FETs they show a lower maximum power gain frequency.
Manufacturers of LDMOS devices and foundries offering LDMOS technologies include , Tower Semiconductor, TSMC, LFoundry, SAMSUNG, GLOBALFOUNDRIES, Vanguard International Semiconductor Corporation, STMicroelectronics, Infineon Technologies, RFMD, NXP Semiconductors (including former Freescale Semiconductor), SMIC, MK Semiconductors, Polyfet and Ampleon.
Photo Gallery
Applications
Common applications of LDMOS technology include the following.
- Amplifiers — RF power amplifiers,[2][3] audio power amplifiers,[7] class AB[4]
- Audio technology — loudspeakers, high-fidelity (hi-fi) equipment, public announcement (PA) systems[7]
- Mobile devices — mobile phones[3]
- Pulse applications[4]
- Radio-frequency (RF) technology — RF engineering (RF engineering), RF power amplifiers[2][3][8]
- Wireless technology — wireless networks and digital networks[2][3]
RF LDMOS
Common applications of RF LDMOS technology include the following.
- Aerospace and defense technology[5] — military applications[9]
- Alarm and security — security alarm[14]
- Avionics[15][10] — ADS-B transponders, identification friend or foe (IFF) transponders, secondary surveillance radar (SSR), distance measuring equipment (DME), Mode S edge-localized mode (ELM), tactical data link (TDL),[10] airband[16]
- Consumer electronics[14]
- Data logging[17]
- Equipment condition monitoring (CM)[17]
- Fire detection[17]
- Gas detection — carbon monoxide detector (CO detector), methane detection[17]
- Industrial, Scientific and Medical band (ISM band) applications[15][4] — particle accelerators,[18][19] welding,[19] continuous wave (CW) applications, linear applications,[20] pulse applications[10][9][20]
- Laser technology — laser drivers,[18] carbon dioxide laser (CO2 laser)[21]
- Radio technology — commercial radio, public safety radio, marine radio,[13] amateur radio,[21] portable radio,[17] wideband,[22] narrowband[23]
- Millimeter-wave (mmW) technology[24]
- Mobile radio[15][25] — professional mobile radio, handheld transistor radio, analog radio, digital radio,[25] digital mobile radio (DMR),[26] land mobile radio system (LMRS),[16] private mobile radio (PMR),[17] Terrestrial Trunked Radio (TETRA)[25][19]
- Radar technology[15][4] — L band,[11][9] S band[11][23]
- Radio-frequency (RF) technology — radio-frequency identification (RFID)[13] RF plasma generator[18]
- RF energy technology[27][5][28] — lighting, medical technology, drying, automotive electronics[28]
- Heating — electric heating,[21] RF heating,[18][5] microwave heating[28]
- Kitchen appliances — smart appliances,[5] countertop appliances, cooking appliances,[29] RF cooking,[27][18][5] microwave cooking,[4] RF defrosting,[18][5][29] frozen food defrosting, freezers, refrigerators, ovens[29]
- Smart lighting — RF lighting and wireless light switch[4]
- Telecommunications[15]
- Broadband[14] — mobile broadband[25]
- Broadcasting — ultra high frequency (UHF) broadcasting,[14] FM broadcasting[18][4][21]
- Cellular networks[30][5] — 2G, 3G,[2] International Mobile Telecommunications-2000 (IMT),[22] Long-Term Evolution (LTE),[31] 4G,[3][5] 5G,[3][5][31] 5G New Radio (5G NR)[32][33]
- High frequency (HF) communication — very high frequency (VHF),[18][4] ultra high frequency (UHF)[13][4]
- Cellular voice and data traffic[5]
- Television (TV)[18] — VHF TV,[21] UHF TV, digital TV (DTV), TV transmitter equipment[14]
- Wideband and mobile communications[13] — base stations,[13][4][19] emergency position-indicating radiobeacon station (EPIRB), sonar buoys, automatic meter reading (AMR)[13]
- Wireless technology — mobile communication, satellite communication,[15] wireless data modems,[13] WiMAX[4]
- Voltage standing wave ratio (VSWR) applications[34][21] — plasma etching and synchrotrons[21]
See also
References
- ^ a b A. Elhami Khorasani, IEEE Electron Dev. Lett., vol. 35, pp. 1079-1081, 2014
- ^ a b c d e Baliga, Bantval Jayant (2005). Silicon RF Power MOSFETS. World Scientific. pp. 1–2. ISBN 9789812561213.
- ^ a b c d e f g h Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. p. 134. ISBN 9780429881343.
- ^ a b c d e f g h i j k l Theeuwen, S. J. C. H.; Qureshi, J. H. (June 2012). "LDMOS Technology for RF Power Amplifiers" (PDF). IEEE Transactions on Microwave Theory and Techniques. 60 (6): 1755–1763. Bibcode:2012ITMTT..60.1755T. doi:10.1109/TMTT.2012.2193141. ISSN 1557-9670. S2CID 7695809.
- ^ a b c d e f g h i j k "LDMOS Products and Solutions". NXP Semiconductors. Retrieved 4 December 2019.
- ^ van Rijs, F. (2008). "Status and trends of silicon LDMOS base station PA technologies to go beyond 2.5 GHz applications". Radio and Wireless Symposium, 2008 IEEE. Orlando, FL. pp. 69–72. doi:10.1109/RWS.2008.4463430.
- ^ a b Duncan, Ben (1996). High Performance Audio Power Amplifiers. Elsevier. pp. 177-8, 406. ISBN 9780080508047.
- ^ "A 600W broadband HF amplifier using affordable LDMOS devices". QRPblog. 2019-10-27. Retrieved 2022-09-28.
- ^ a b c "L-Band Radar". NXP Semiconductors. Retrieved 9 December 2019.
- ^ a b c d "Avionics". NXP Semiconductors. Retrieved 9 December 2019.
- ^ a b c "RF Aerospace and Defense". NXP Semiconductors. Retrieved 7 December 2019.
- ^ a b "Communications and Electronic Warfare". NXP Semiconductors. Retrieved 9 December 2019.
- ^ a b c d e f g h "Mobile & Wideband Comms". ST Microelectronics. Retrieved 4 December 2019.
- ^ a b c d e f "470-860 MHz – UHF Broadcast". NXP Semiconductors. Retrieved 12 December 2019.
- ^ a b c d e f "RF LDMOS Transistors". ST Microelectronics. Retrieved 2 December 2019.
- ^ a b "28/32V LDMOS: IDDE technology boost efficiency & robustness" (PDF). ST Microelectronics. Retrieved 23 December 2019.
- ^ a b c d e f "AN2048: Application note – PD54008L-E: 8 W - 7 V LDMOS in PowerFLAT packages for wireless meter reading applications" (PDF). ST Microelectronics. Retrieved 23 December 2019.
- ^ a b c d e f g h i j k "ISM & Broadcast". ST Microelectronics. Retrieved 3 December 2019.
- ^ a b c d "700-1300 MHz – ISM". NXP Semiconductors. Retrieved 12 December 2019.
- ^ a b "2450 MHz – ISM". NXP Semiconductors. Retrieved 12 December 2019.
- ^ a b c d e f g h "1-600 MHz – Broadcast and ISM". NXP Semiconductors. Retrieved 12 December 2019.
- ^ a b "28/32 V LDMOS: New IDCH technology boosts RF power performance up to 4 GHz" (PDF). ST Microelectronics. Retrieved 23 December 2019.
- ^ a b "S-Band Radar". NXP Semiconductors. Retrieved 9 December 2019.
- ^ "RF Cellular Infrastructure". NXP Semiconductors. Retrieved 7 December 2019.
- ^ a b c d "RF Mobile Radio". NXP Semiconductors. Retrieved 9 December 2019.
- ^ "UM0890: User manual – 2-stage RF power amplifier with LPF based on the PD85006L-E and STAP85050 RF power transistors" (PDF). ST Microelectronics. Retrieved 23 December 2019.
- ^ a b "915 MHz RF Cooking". NXP Semiconductors. Retrieved 7 December 2019.
- ^ a b c Torres, Victor (21 June 2018). "Why LDMOS is the best technology for RF energy". Microwave Engineering Europe. Ampleon. Retrieved 10 December 2019.
- ^ a b c "RF Defrosting". NXP Semiconductors. Retrieved 12 December 2019.
- ^ "White Paper – 50V RF LDMOS: An ideal RF power technology for ISM, broadcast and commercial aerospace applications" (PDF). NXP Semiconductors. Freescale Semiconductor. September 2011. Retrieved 4 December 2019.
- ^ a b "RF Cellular Infrastructure". NXP Semiconductors. Retrieved 12 December 2019.
- ^ "450 - 1000 MHz". NXP Semiconductors. Retrieved 12 December 2019.
- ^ "3400 - 4100 MHz". NXP Semiconductors. Retrieved 12 December 2019.
- ^ "HF, VHF and UHF Radar". NXP Semiconductors. Retrieved 7 December 2019.