Special linear Lie algebra

In mathematics, the special linear Lie algebra of order over a field , denoted or , is the Lie algebra of all the matrices (with entries in ) with trace zero and with the Lie bracket given by the commutator. This algebra is well studied and understood, and is often used as a model for the study of other Lie algebras. The Lie group that it generates is the special linear group.

Applications

edit

The Lie algebra   is central to the study of special relativity, general relativity and supersymmetry: its fundamental representation is the so-called spinor representation, while its adjoint representation generates the Lorentz group SO(3,1) of special relativity.

The algebra   plays an important role in the study of chaos and fractals, as it generates the Möbius group SL(2,R), which describes the automorphisms of the hyperbolic plane, the simplest Riemann surface of negative curvature; by contrast, SL(2,C) describes the automorphisms of the hyperbolic 3-dimensional ball.

Representation theory

edit

Representation theory of sl2C

edit

The Lie algebra   is a three-dimensional complex Lie algebra. Its defining feature is that it contains a basis   satisfying the commutation relations

 ,  , and  .

This is a Cartan-Weyl basis for  . It has an explicit realization in terms of 2-by-2 complex matrices with zero trace:

 ,  ,  .

This is the fundamental or defining representation for  .

The Lie algebra   can be viewed as a subspace of its universal enveloping algebra   and, in  , there are the following commutator relations shown by induction:[1]

 ,
 .

Note that, here, the powers  , etc. refer to powers as elements of the algebra U and not matrix powers. The first basic fact (that follows from the above commutator relations) is:[1]

Lemma — Let   be a representation of   and   a vector in it. Set   for each  . If   is an eigenvector of the action of  ; i.e.,   for some complex number  , then, for each  ,

  •  .
  •  .
  •  .

From this lemma, one deduces the following fundamental result:[2]

Theorem — Let   be a representation of   that may have infinite dimension and   a vector in   that is a  -weight vector (  is a Borel subalgebra).[3] Then

  • Those  's that are nonzero are linearly independent.
  • If some   is zero, then the  -eigenvalue of v is a nonnegative integer   such that   are nonzero and  . Moreover, the subspace spanned by the  's is an irreducible  -subrepresentation of  .

The first statement is true since either   is zero or has  -eigenvalue distinct from the eigenvalues of the others that are nonzero. Saying   is a  -weight vector is equivalent to saying that it is simultaneously an eigenvector of   and  ; a short calculation then shows that, in that case, the  -eigenvalue of   is zero:  . Thus, for some integer  ,   and in particular, by the early lemma,

 

which implies that  . It remains to show   is irreducible. If   is a subrepresentation, then it admits an eigenvector, which must have eigenvalue of the form  ; thus is proportional to  . By the preceding lemma, we have   is in   and thus  .  

As a corollary, one deduces:

  • If   has finite dimension and is irreducible, then  -eigenvalue of v is a nonnegative integer   and   has a basis  .
  • Conversely, if the  -eigenvalue of   is a nonnegative integer and   is irreducible, then   has a basis  ; in particular has finite dimension.

The beautiful special case of   shows a general way to find irreducible representations of Lie algebras. Namely, we divide the algebra to three subalgebras "h" (the Cartan subalgebra), "e", and "f", which behave approximately like their namesakes in  . Namely, in an irreducible representation, we have a "highest" eigenvector of "h", on which "e" acts by zero. The basis of the irreducible representation is generated by the action of "f" on the highest eigenvectors of "h". See the theorem of the highest weight.

Representation theory of slnC

edit

When   for a complex vector space   of dimension  , each finite-dimensional irreducible representation of   can be found as a subrepresentation of a tensor power of  .[4]

The Lie algebra can be explicitly realized as a matrix Lie algebra of traceless   matrices. This is the fundamental representation for  .

Set   to be the matrix with one in the   entry and zeroes everywhere else. Then

 
 

Form a basis for  . This is technically an abuse of notation, and these are really the image of the basis of   in the fundamental representation.

Furthermore, this is in fact a Cartan–Weyl basis, with the   spanning the Cartan subalgebra. Introducing notation   if  , and  , also if  , the   are positive roots and   are corresponding negative roots.

A basis of simple roots is given by   for  .

Notes

edit
  1. ^ a b Kac 1990, § 3.2, pp 30–31.
  2. ^ Serre 2001, Ch IV, § 3, Theorem 1. Corollary 1.
  3. ^ Such a   is also commonly called a primitive element of  .
  4. ^ Serre 2001, Ch. VII, § 6.

References

edit
  • Etingof, Pavel. "Lecture Notes on Representation Theory".
  • Kac, Victor (1990). "Integrable Representations of Kac–Moody Algebras and the Weyl Group". Infinite dimensional Lie algebras (3rd ed.). Cambridge University Press. doi:10.1017/CBO9780511626234.004. ISBN 0-521-46693-8.
  • Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer
  • A. L. Onishchik, E. B. Vinberg, V. V. Gorbatsevich, Structure of Lie groups and Lie algebras. Lie groups and Lie algebras, III. Encyclopaedia of Mathematical Sciences, 41. Springer-Verlag, Berlin, 1994. iv+248 pp. (A translation of Current problems in mathematics. Fundamental directions. Vol. 41, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990. Translation by V. Minachin. Translation edited by A. L. Onishchik and E. B. Vinberg) ISBN 3-540-54683-9
  • V. L. Popov, E. B. Vinberg, Invariant theory. Algebraic geometry. IV. Linear algebraic groups. Encyclopaedia of Mathematical Sciences, 55. Springer-Verlag, Berlin, 1994. vi+284 pp. (A translation of Algebraic geometry. 4, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989. Translation edited by A. N. Parshin and I. R. Shafarevich) ISBN 3-540-54682-0
  • Serre, Jean-Pierre (2001), Algèbres de Lie semi-simples complexes [Complex Semisimple Lie Algebras], translated by Jones, G. A., Springer, doi:10.1007/978-3-642-56884-8, ISBN 978-3-540-67827-4.

See also

edit