Solar eclipse of July 13, 2018

A partial solar eclipse occurred at the Moon's ascending node of orbit on Friday, July 13, 2018,[1][2][3] with a magnitude of 0.3365. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Solar eclipse of July 13, 2018
Map
Type of eclipse
NaturePartial
Gamma−1.3542
Magnitude0.3365
Maximum eclipse
Coordinates67°54′S 127°24′E / 67.9°S 127.4°E / -67.9; 127.4
Times (UTC)
Greatest eclipse3:02:16
References
Saros117 (69 of 71)
Catalog # (SE5000)9548

The moon's penumbra touched a small part of Antarctica, and southern Australia in Tasmania, where the eclipse was observed with a magnitude of about 0.1. The eclipse was also visible in Stewart Island, an island south of New Zealand.[4]

Images

edit

 

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[5]

July 13, 2018 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2018 July 13 at 01:49:32.3 UTC
Ecliptic Conjunction 2018 July 13 at 02:49:01.2 UTC
Greatest Eclipse 2018 July 13 at 03:02:16.1 UTC
Equatorial Conjunction 2018 July 13 at 03:10:13.3 UTC
Last Penumbral External Contact 2018 July 13 at 04:14:55.9 UTC
July 13, 2018 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.33654
Eclipse Obscuration 0.22578
Gamma −1.35423
Sun Right Ascension 07h29m31.1s
Sun Declination +21°50'30.6"
Sun Semi-Diameter 15'44.0"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 07h29m10.9s
Moon Declination +20°27'46.1"
Moon Semi-Diameter 16'42.8"
Moon Equatorial Horizontal Parallax 1°01'20.4"
ΔT 69.2 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of July–August 2018
July 13
Ascending node (new moon)
July 27
Descending node (full moon)
August 11
Ascending node (new moon)
     
Partial solar eclipse
Solar Saros 117
Total lunar eclipse
Lunar Saros 129
Partial solar eclipse
Solar Saros 155
edit

Eclipses in 2018

edit

Metonic

edit

Half-Saros

edit

Tritos

edit

Solar Saros 117

edit

Inex

edit

Triad

edit

Solar eclipses of 2018–2021

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]

The partial solar eclipses on February 15, 2018 and August 11, 2018 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2018 to 2021
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117
 
Partial in Melbourne, Australia
July 13, 2018
 
Partial
−1.35423 122
 
Partial in Nakhodka, Russia
January 6, 2019
 
Partial
1.14174
127
 
Totality in La Serena, Chile
July 2, 2019
 
Total
−0.64656 132
 
Annularity in Jaffna, Sri Lanka
December 26, 2019
 
Annular
0.41351
137
 
Annularity in Beigang, Yunlin, Taiwan
June 21, 2020
 
Annular
0.12090 142
 
Totality in Gorbea, Chile
December 14, 2020
 
Total
−0.29394
147
 
Partial in Halifax, Canada
June 10, 2021
 
Annular
0.91516 152
 
From HMS Protector off South Georgia
December 4, 2021
 
Total
−0.95261

Saros 117

edit

This eclipse is a part of Saros series 117, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 24, 792 AD. It contains annular eclipses from September 18, 936 AD through May 14, 1333; hybrid eclipses from May 25, 1351 through July 8, 1423; and total eclipses from July 18, 1441 through May 19, 1928. The series ends at member 71 as a partial eclipse on August 3, 2054. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 16 at 9 minutes, 26 seconds on December 3, 1062, and the longest duration of totality was produced by member 62 at 4 minutes, 19 seconds on April 26, 1892. All eclipses in this series occur at the Moon’s ascending node of orbit.[7]

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 13, 2018 and July 12, 2094
July 12–13 April 30–May 1 February 16–17 December 5–6 September 22–23
117 119 121 123 125
 
July 13, 2018
 
April 30, 2022
 
February 17, 2026
 
December 5, 2029
 
September 23, 2033
127 129 131 133 135
 
July 13, 2037
 
April 30, 2041
 
February 16, 2045
 
December 5, 2048
 
September 22, 2052
137 139 141 143 145
 
July 12, 2056
 
April 30, 2060
 
February 17, 2064
 
December 6, 2067
 
September 23, 2071
147 149 151 153 155
 
July 13, 2075
 
May 1, 2079
 
February 16, 2083
 
December 6, 2086
 
September 23, 2090
157
 
July 12, 2094

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 2018 and 2200
 
July 13, 2018
(Saros 117)
 
June 12, 2029
(Saros 118)
 
May 11, 2040
(Saros 119)
 
April 11, 2051
(Saros 120)
 
March 11, 2062
(Saros 121)
 
February 7, 2073
(Saros 122)
 
January 7, 2084
(Saros 123)
 
December 7, 2094
(Saros 124)
 
November 6, 2105
(Saros 125)
 
October 6, 2116
(Saros 126)
 
September 6, 2127
(Saros 127)
 
August 5, 2138
(Saros 128)
 
July 5, 2149
(Saros 129)
 
June 4, 2160
(Saros 130)
 
May 5, 2171
(Saros 131)
 
April 3, 2182
(Saros 132)
 
March 3, 2193
(Saros 133)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1844 and 2200
 
November 10, 1844
(Saros 111)
 
September 12, 1931
(Saros 114)
 
July 13, 2018
(Saros 117)
 
June 23, 2047
(Saros 118)
 
June 1, 2076
(Saros 119)
 
May 14, 2105
(Saros 120)
 
April 24, 2134
(Saros 121)
 
April 3, 2163
(Saros 122)
 
March 13, 2192
(Saros 123)

References

edit
  1. ^ "July 13, 2018 Partial Solar Eclipse". timeanddate. Retrieved 12 August 2024.
  2. ^ "A Supermoon Partial Eclipse Is Happening Just in Time for Friday the 13th". Popular Mechanics. July 13, 2018.
  3. ^ Padgett, Lauren. "Friday the 13th solar eclipse only visible to rare few" – via AJC.com.
  4. ^ "Partial Solar Eclipse on July 13, 2018". www.timeanddate.com. Retrieved July 13, 2018.
  5. ^ "Partial Solar Eclipse of 2018 Jul 13". EclipseWise.com. Retrieved 12 August 2024.
  6. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  7. ^ "NASA - Catalog of Solar Eclipses of Saros 117". eclipse.gsfc.nasa.gov.
edit