Solar eclipse of December 22, 1870

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, December 22, 1870, with a magnitude of 1.0248. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.4 days before perigee (on December 21, 1870, at 3:50 UTC), the Moon's apparent diameter was larger.[1]

Solar eclipse of December 22, 1870
Map
Type of eclipse
NatureTotal
Gamma0.8585
Magnitude1.0248
Maximum eclipse
Duration131 s (2 min 11 s)
Coordinates35°42′N 1°30′W / 35.7°N 1.5°W / 35.7; -1.5
Max. width of band165 km (103 mi)
Times (UTC)
Greatest eclipse12:27:33
References
Saros120 (53 of 71)
Catalog # (SE5000)9213

The path of totality was visible from parts of modern-day southern Portugal, southern Spain, northern Morocco, northern Algeria, Tunisia, Italy, Greece, northwestern Turkey, southeastern Bulgaria, southeastern Ukraine, and western Russia. A partial solar eclipse was also visible for parts of eastern Canada, Europe, North Africa, West Africa, and the Middle East.

Observations

edit
 
From Syracuse by Captain G. L. Tupman, R.M.A.

 

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

December 22, 1870 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1870 December 22 at 10:13:56.6 UTC
First Umbral External Contact 1870 December 22 at 11:33:35.2 UTC
First Central Line 1870 December 22 at 11:34:27.4 UTC
First Umbral Internal Contact 1870 December 22 at 11:35:20.3 UTC
Ecliptic Conjunction 1870 December 22 at 12:18:47.9 UTC
Equatorial Conjunction 1870 December 22 at 12:19:09.0 UTC
Greatest Duration 1870 December 22 at 12:27:10.9 UTC
Greatest Eclipse 1870 December 22 at 12:27:32.6 UTC
Last Umbral Internal Contact 1870 December 22 at 13:19:52.2 UTC
Last Central Line 1870 December 22 at 13:20:43.5 UTC
Last Umbral External Contact 1870 December 22 at 13:21:34.1 UTC
Last Penumbral External Contact 1870 December 22 at 14:41:15.4 UTC
December 22, 1870 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 1.02476
Eclipse Obscuration 1.05013
Gamma 0.85849
Sun Right Ascension 18h02m16.0s
Sun Declination -23°27'15.7"
Sun Semi-Diameter 16'15.7"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 18h02m37.0s
Moon Declination -22°35'32.9"
Moon Semi-Diameter 16'31.5"
Moon Equatorial Horizontal Parallax 1°00'38.9"
ΔT -0.1 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 1870–January 1871
December 22
Descending node (new moon)
January 6
Ascending node (full moon)
 
Total solar eclipse
Solar Saros 120
Partial lunar eclipse
Lunar Saros 132
edit

Eclipses in 1870

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 120

edit

Inex

edit

Triad

edit

Solar eclipses of 1870–1873

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on January 31, 1870 and July 28, 1870 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 1870 to 1873
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
115 June 28, 1870
 
Partial
−1.1949 120 December 22, 1870
 
Total
0.8585
125 June 18, 1871
 
Annular
−0.4550 130 December 12, 1871
 
Total
0.1836
135 June 6, 1872
 
Annular
0.3095 140 November 30, 1872
 
Hybrid
−0.5081
145 May 26, 1873
 
Partial
1.0513 150 November 20, 1873
 
Partial
−1.2625

Saros 120

edit

This eclipse is a part of Saros series 120, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 27, 933 AD. It contains annular eclipses from August 11, 1059 through April 26, 1492; hybrid eclipses from May 8, 1510 through June 8, 1564; and total eclipses from June 20, 1582 through March 30, 2033. The series ends at member 71 as a partial eclipse on July 7, 2195. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 11 at 6 minutes, 24 seconds on September 11, 1113, and the longest duration of totality was produced by member 60 at 2 minutes, 50 seconds on March 9, 1997. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Series members 50–71 occur between 1801 and 2195:
50 51 52
 
November 19, 1816
 
November 30, 1834
 
December 11, 1852
53 54 55
 
December 22, 1870
 
January 1, 1889
 
January 14, 1907
56 57 58
 
January 24, 1925
 
February 4, 1943
 
February 15, 1961
59 60 61
 
February 26, 1979
 
March 9, 1997
 
March 20, 2015
62 63 64
 
March 30, 2033
 
April 11, 2051
 
April 21, 2069
65 66 67
 
May 2, 2087
 
May 14, 2105
 
May 25, 2123
68 69 70
 
June 4, 2141
 
June 16, 2159
 
June 26, 2177
71
 
July 7, 2195

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 5, 1848 and July 30, 1935
March 5–6 December 22–24 October 9–11 July 29–30 May 17–18
108 110 112 114 116
 
March 5, 1848
 
July 29, 1859
 
May 17, 1863
118 120 122 124 126
 
March 6, 1867
 
December 22, 1870
 
October 10, 1874
 
July 29, 1878
 
May 17, 1882
128 130 132 134 136
 
March 5, 1886
 
December 22, 1889
 
October 9, 1893
 
July 29, 1897
 
May 18, 1901
138 140 142 144 146
 
March 6, 1905
 
December 23, 1908
 
October 10, 1912
 
July 30, 1916
 
May 18, 1920
148 150 152 154
 
March 5, 1924
 
December 24, 1927
 
October 11, 1931
 
July 30, 1935

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
June 26, 1805
(Saros 114)
 
May 27, 1816
(Saros 115)
 
April 26, 1827
(Saros 116)
 
March 25, 1838
(Saros 117)
 
February 23, 1849
(Saros 118)
 
January 23, 1860
(Saros 119)
 
December 22, 1870
(Saros 120)
 
November 21, 1881
(Saros 121)
 
October 20, 1892
(Saros 122)
 
September 21, 1903
(Saros 123)
 
August 21, 1914
(Saros 124)
 
July 20, 1925
(Saros 125)
 
June 19, 1936
(Saros 126)
 
May 20, 1947
(Saros 127)
 
April 19, 1958
(Saros 128)
 
March 18, 1969
(Saros 129)
 
February 16, 1980
(Saros 130)
 
January 15, 1991
(Saros 131)
 
December 14, 2001
(Saros 132)
 
November 13, 2012
(Saros 133)
 
October 14, 2023
(Saros 134)
 
September 12, 2034
(Saros 135)
 
August 12, 2045
(Saros 136)
 
July 12, 2056
(Saros 137)
 
June 11, 2067
(Saros 138)
 
May 11, 2078
(Saros 139)
 
April 10, 2089
(Saros 140)
 
March 10, 2100
(Saros 141)
 
February 8, 2111
(Saros 142)
 
January 8, 2122
(Saros 143)
 
December 7, 2132
(Saros 144)
 
November 7, 2143
(Saros 145)
 
October 7, 2154
(Saros 146)
 
September 5, 2165
(Saros 147)
 
August 4, 2176
(Saros 148)
 
July 6, 2187
(Saros 149)
 
June 4, 2198
(Saros 150)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
February 1, 1813
(Saros 118)
 
January 11, 1842
(Saros 119)
 
December 22, 1870
(Saros 120)
 
December 3, 1899
(Saros 121)
 
November 12, 1928
(Saros 122)
 
October 23, 1957
(Saros 123)
 
October 3, 1986
(Saros 124)
 
September 13, 2015
(Saros 125)
 
August 23, 2044
(Saros 126)
 
August 3, 2073
(Saros 127)
 
July 15, 2102
(Saros 128)
 
June 25, 2131
(Saros 129)
 
June 4, 2160
(Saros 130)
 
May 15, 2189
(Saros 131)

References

edit
  1. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 2 September 2024.
  2. ^ "Total Solar Eclipse of 1870 Dec 22". EclipseWise.com. Retrieved 2 September 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 120". eclipse.gsfc.nasa.gov.