Ferroptosis (also known as oxytosis) is a type of programmed cell death dependent on iron and characterized by the accumulation of lipid peroxides. Ferroptosis is biochemically, genetically, and morphologically distinct from other forms of regulated cell death such as apoptosis and necroptosis.[1] Oxytosis/ferroptosis can be initiated by the failure of the glutathione-dependent antioxidant defenses, resulting in unchecked lipid peroxidation and eventual cell death.[2] Lipophilic antioxidants[3] and iron chelators[1] can prevent ferroptotic cell death.
Researchers have identified roles in which oxytosis/ferroptosis can contribute to the medical field, such as the development of cancer therapies.[4] Ferroptosis activation plays a regulatory role on growth of tumor cells in the human body. However, the positive effects of oxytosis/ferroptosis could be potentially neutralized by its disruption of metabolic pathways and disruption of homeostasis in the human body.[5] Since oxytosis/ferroptosis is a form of regulated cell death,[6] some of the molecules that regulate oxytosis/ferroptosis are involved in metabolic pathways that regulate cysteine exploitation, glutathione state, nicotinamide adenine dinucleotide phosphate (NADP) function, lipid peroxidation, and iron homeostasis.[5]
History
editIn 1989, work by the groups of Joseph T. Coyle and Ronald Schnaar showed in a neuronal cell line that excess exposure to glutamate or lowered cystine causes a decrease in glutathione levels, an accumulation in intracellular peroxides, and cytotoxicity.[7][8] Later work by Pamela Maher and David Schubert noted the distinction of this cell death process from apoptosis, describing it as oxidative glutamate toxicity or oxytosis.[9][10][11] In 2012, a study by Brent Stockwell and Scott Dixon characterized the iron dependence of this cell death process and coined the term ferroptosis.[1] Oxytosis and ferroptosis are now thought to be the same cell death mechanism.[12][13]
Ferroptosis was initially characterized in human cell lines and has been since found to occur in other mammals (mice),[14] avians (chicken),[15] worms (C. elegans),[16][17] and plants (A. thaliana).[18] Elements related to components of the ferroptosis pathway have been identified in archaea, bacteria, and fungi, though it is unclear the extent to which ferroptosis occurs in these organisms.[19][20] Further studies in this area may reveal an ancient origin for ferroptosis.
Other early studies regarding the connection between iron and lipid peroxidation,[21][22][23][24][25] cystine deprivation and oxidative cell death,[26][27][28][29][30] the activity and importance of glutathione peroxidase 4 (GPX4),[31][32][33][34][35] and the identification of small molecules that induce ferroptosis[36][37][38] were key to the eventual characterization of ferroptosis.
Mechanism
editThe hallmark feature of oxytosis/ferroptosis is the iron-dependent accumulation of oxidatively damaged phospholipids (i.e., lipid peroxides). The implication of Fenton chemistry via iron is crucial for the generation of reactive oxygen species and this feature can be exploited by sequestering iron in lysosomes.[39] Oxidation of phospholipids can occur when free radicals abstract electrons from a lipid molecule (typically affecting polyunsaturated fatty acids), thereby promoting their oxidation.
The primary cellular mechanism of protection against oxytosis/ferroptosis is mediated by the selenoprotein GPX4, a glutathione-dependent hydroperoxidase that converts lipid peroxides into non-toxic lipid alcohols.[40][41] Recently, a second parallel protective pathway was independently discovered by two labs that involves the oxidoreductase FSP1 (also known as AIFM2).[42][43] FSP1 enzymatically reduces non-mitochondrial coenzyme Q10 (CoQ10), thereby generating a potent lipophilic antioxidant that suppresses the propagation of lipid peroxides.[42][43] A similar mechanism for a cofactor moonlighting as a diffusable antioxidant was discovered in the same year for tetrahydrobiopterin (BH4), a product of the rate-limiting enzyme GTP cyclohdrolase 1 (GCH1).[44][45]
Replacing natural polyunsaturated fatty acids (PUFA) with deuterated PUFA (dPUFA), which have deuterium in place of the bis-allylic hydrogens, can prevent cell death induced by erastin or RSL3.[46] These deuterated PUFAs effectively inhibit ferroptosis and various chronic degenerative diseases associated with ferroptosis.[47]
Live-cell imaging has been used to observe the morphological changes that cells undergo during oxytosis/ferroptosis. Initially the cell contracts and then begins to swell. Perinuclear lipid assembly is observed immediately before oxytosis/ferroptosis occurs. After the process is complete, lipid droplets are redistributed throughout the cell (see GIF on right side). [citation needed]
Biology
editIn development
editDuring embryonic development, many cells die via apoptosis and other cell death pathways for various purposes including morphogenesis tissue sculpting, controlling cell numbers, and quality control.[48][49] In 2024, it was found that ferroptosis plays a role in normal physiology during embryonic development and muscle remodelling, propagating in millimeter-length waves through the developing avian limb.[15] The exact pro-ferroptotic signal that is transmitted between cells and the manner by which these ferroptotic waves are bounded remain to be characterized.
Therapeutic relevance
editFundamental discoveries uncovering the biology of ferroptosis and translational studies showing the disease relevance of ferroptosis have motivated efforts to develop therapeutics that modulate ferroptosis. For example, Kojin Therapeutics and PTC Therapeutics are exploring ferroptosis modulation for treatment of cancer and Friedrich's ataxia.[50][51] Ferroptosis has been implicated in a range of different diseases including cancer, ischemia/reperfusion injury (IRI), inflammation, neurodegeneration, and kidney injury.[52]
Cancer
editFerroptosis has been explored as a strategy to selectively kill cancer cells.[53]
Oxytosis/ferroptosis has been implicated in several types of cancer, including: [citation needed]
- Breast
- Acute myeloid leukemia
- Pancreatic ductal adenocarcinoma
- Ovarian
- B-cell lymphoma
- Renal cell carcinomas
- Lung
- Glioblastoma
These forms of cancer have been hypothesized to be highly sensitive to oxytosis/ferroptosis induction. An upregulation of iron levels has also been seen to induce oxytosis/ferroptosis in certain types of cancer, such as breast cancer.[4] Breast cancer cells have exhibited vulnerability to oxytosis/ferroptosis via a combination of siramesine and lapatinib. These cells also exhibited an autophagic cycle independent of ferroptotic activity, indicating that the two different forms of cell death could be controlled to activate at specific times following treatment.[54] Furthermore, intratumor bacteria may scavenge iron by producing iron siderophores, which indirectly protect tumor cells from ferroptosis, emphasizing the need for ferroptosis inducers (thiostrepton) for cancer treatment.[55]
In various contexts, resistance to cancer therapy is associated with a mesenchymal state.[56][57][58] A pair of studies in 2017 found that these cancer cells in this therapy-induced drug-resistant state exhibit a greater dependence on GPX4 to suppress ferroptosis. Consequently, GPX4 inhibition represents a possible therapeutic strategy to mitigate acquired drug resistance.[59][60]
Neurodegeneration
editNeural connections are constantly changing within the nervous system. Synaptic connections that are used more often are kept intact and promoted, while synaptic connections that are rarely used are subject to degradation. Elevated levels of synaptic connection loss and degradation of neurons are linked to neurodegenerative diseases.[61] More recently, oxytosis/ferroptosis has been linked to diverse brain diseases,[62] in particular, Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease.[63] Two new studies show that oxytosis/ferroptosis contributes to neuronal death after intracerebral hemorrhage.[64][65] Neurons that are degraded through oxytosis/ferroptosis release lipid metabolites from inside the cell body. The lipid metabolites are harmful to surrounding neurons, causing inflammation in the brain. Inflammation is a pathological feature of Alzheimer’s disease and intracerebral hemorrhage. [citation needed]
Recent studies have suggested that oxytosis/ferroptosis contributes to neuronal cell death after traumatic brain injury.[66]
Acute kidney injury
editFerroptosis occurs during acute kidney injury in various cellular and animal models.[14][67][68][69][70] Deficiencies in ferroptosis suppressor enzymes such as GPX4 and FSP1 sensitize kidneys to tubular ferroptosis during kidney IRI, thus inhibition of ferroptosis may be of therapeutic benefit.[69]
During chemotherapy treatment, ferroptosis contributes to acute kidney injury.[71][72][73] Reagents to image ferroptosis have been developed to monitor anticancer drug-induced acute kidney injury in mouse models.[74]
Immunology
editFerroptosis has been implicated in many immune processes including both adaptive and innate immunity and diseases such as infection and autoimmune disease.[75][76][52]
Systemic lupus erythematosus
editSystemic lupus erythematosus (SLE) is a chronic autoimmune disease.[77] Studies have implicated a role for neutrophil death (NETosis) in SLE.[78][79][80] Neutrophil ferroptosis is prevalent in patients with SLE and is induced by autoantibodies and interferon-alpha (IFN-α), which suppress GPX4 expression via the transcriptional repressor CREMα. Inhibition of ferroptosis was able to ameliorate SLE disease progression in the MRL/lpr mouse model of SLE.[81]
Inflammatory bowel diseases
editThere is a genetic association between GPX4 and Crohn's disease.[82] Subsequent study found that small intestinal epithelial cells (IECs) from Crohn's disease patient samples show reduced GPX4 expression and activity and lipid peroxidation.[83] The same study found that dietary lipids in Western diets such as the PUFA arachidonic acid can trigger enteritis resembling Crohn's disease in a mouse model.[83]
Small molecule modulators of ferroptosis
editInducers
editMany compounds commonly used in ferroptosis studies including erastin,[36] RSL3 (RAS-selective lethal),[38] ML162, and ML210 [from National Institutes of Health-Molecular Libraries Small Molecule Repository (NIH-MLSMR)] [84] were initially identified in screens for compounds that can selectively kill cancerous mutant RAS cells.
Initial studies characterized the mitochondrial VDAC2 and VDAC3 as the targets of erastin,[37] though it was later found that the mechanistic target of erastin is the cystine/glutamate transporter system xc-.[1] Erastin inhibits system xc-, lowering intracellular GSH levels.[1] Consequently, the GSH-dependent GPX4 is unable to detoxify lipid hydroperoxide species, leading to ferroptotic cell death. Derivatives of erastin have been prepared to improve aqueous solubility, potency, and metabolic stability, with imidazole ketone erastin (IKE) being the most extensively studied.[40][85][86]
RSL3 and ML162 contain chloroacetamide moieties that can covalently react with nucleophilic residues. RSL3 and ML162 are able to bind to and inhibit GPX4 enzymatic activity or degrade GPX4 in lysate-based assays,[60][87][88] though it has been found that RSL3 and ML162 do not inhibit purified GPX4 in vitro and target other selenoproteins such as thioredoxin reductase 1 (TXNRD1).[89] However, other TXNRD1 inhibitors do not trigger ferroptosis, suggesting that TXNRD1 inhibition is not sufficient to trigger ferroptosis.[89] The GPX4-inhibiting activity of RSL3 has also been suggested to be regulated by other factors such as 14-3-3ε[90] or through broad targeting of the selenoproteome.[91]
ML210 contains a nitroisoxazole group that acts as a masked nitrile-oxide electrophile. Specifically, in cellular and lysate contexts, ML210 undergoes ring-opening hydrolysis followed by a retro-Claisen-like condensation and ring-closing hydration to yield an unstable furoxan. Through a ring-opening tautomerization, this furoxan then yields a nitrile oxide that selectively reacts with selenocysteine residue 46 of GPX4.[92]
FSP1 inhibition is generally not sufficient to induce ferroptosis but FSP1 inhibitors such as iFSP1 (targeting the CoQ10 binding site) and viFSP1 (versatile inhibitor of FSP1; targeting the NAD(P)H binding pocket) have been explored as ferroptosis sensitizers.[43][94][95][96] It should be noted that iFSP1 is not usable in rodent models, though viFSP1 is species-independent.[95] FSEN1 is an uncompetitive inhibitor of FSP1 that binds to the FSP1–NADH–CoQ complex.[94] 3-Phenylquinazolines (represented by icFSP1) do not competitively inhibit FSP1 enzymatic activity but rather trigger phase separation of FSP1 followed by induction of ferroptosis.[97] Notably, FSP1 activity can compensate for GPX4 loss and suppress ferroptosis in certain contexts.[98]
Inhibitors
editFerroptosis can be inhibited by lipophilic radical trapping antioxidants such as ferrostatin-1,[1][3] liproxstatin-1,[3] and vitamin E.[37] Chelation of iron by agents such as desferrioxamine mesylate (DFO) also prevents lipid peroxidation and suppresses ferroptosis.[38][99]
See also
editReferences
edit- ^ a b c d e f Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. (May 2012). "Ferroptosis: an iron-dependent form of nonapoptotic cell death". Cell. 149 (5): 1060–72. doi:10.1016/j.cell.2012.03.042. PMC 3367386. PMID 22632970.
- ^ Cao JY, Dixon SJ (June 2016). "Mechanisms of ferroptosis". Cellular and Molecular Life Sciences. 73 (11–12): 2195–209. doi:10.1007/s00018-016-2194-1. PMC 4887533. PMID 27048822.
- ^ a b c Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, Pratt DA (March 2017). "On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death". ACS Central Science. 3 (3): 232–243. doi:10.1021/acscentsci.7b00028. PMC 5364454. PMID 28386601.
- ^ a b Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B (12 January 2018). "The Role of Ferroptosis in Cancer Development and Treatment Response". Frontiers in Pharmacology. 8: 992. doi:10.3389/fphar.2017.00992. PMC 5770584. PMID 29375387.
- ^ a b Hao S, Liang B, Huang Q, Dong S, Wu Z, He W, Shi M (April 2018). "Metabolic networks in ferroptosis". Oncology Letters. 15 (4): 5405–5411. doi:10.3892/ol.2018.8066. PMC 5844144. PMID 29556292.
- ^ Nirmala, J. Grace; Lopus, Manu (2020). "Cell death mechanisms in eukaryotes". Cell Biology and Toxicology. 36 (2): 145–164. doi:10.1007/s10565-019-09496-2. PMID 31820165. S2CID 254369328.
- ^ Murphy, T. H.; Miyamoto, M.; Sastre, A.; Schnaar, R. L.; Coyle, J. T. (June 1989). "Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress". Neuron. 2 (6): 1547–1558. doi:10.1016/0896-6273(89)90043-3. ISSN 0896-6273. PMID 2576375.
- ^ Murphy, Timothy H.; Schnaar, Ronald L.; Coyle, Joseph T. (April 1990). "Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake". The FASEB Journal. 4 (6): 1624–1633. doi:10.1096/fasebj.4.6.2180770. ISSN 0892-6638. PMID 2180770.
- ^ Schubert, D.; Piasecki, D. (2001-10-01). "Oxidative glutamate toxicity can be a component of the excitotoxicity cascade". The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 21 (19): 7455–7462. doi:10.1523/JNEUROSCI.21-19-07455.2001. ISSN 1529-2401. PMC 6762876. PMID 11567035.
- ^ Shirlee Tan, Bentham Science Publisher; David Schubert, Bentham Science Publisher; Pamela Maher, Bentham Science Publisher (2001). "Oxytosis: A Novel Form of Programmed Cell Death". Current Topics in Medicinal Chemistry. 1 (6): 497–506. doi:10.2174/1568026013394741. PMID 11895126. Retrieved 2023-03-15.
- ^ Tan, Shirlee; Wood, Malcolm; Maher, Pamela (July 1998). "Oxidative Stress Induces a Form of Programmed Cell Death with Characteristics of Both Apoptosis and Necrosis in Neuronal Cells". Journal of Neurochemistry. 71 (1): 95–105. doi:10.1046/j.1471-4159.1998.71010095.x. ISSN 0022-3042. PMID 9648855.
- ^ Lewerenz, Jan; Ates, Gamze; Methner, Axel; Conrad, Marcus; Maher, Pamela (2018). "Oxytosis/Ferroptosis-(Re-) Emerging Roles for Oxidative Stress-Dependent Non-apoptotic Cell Death in Diseases of the Central Nervous System". Frontiers in Neuroscience. 12: 214. doi:10.3389/fnins.2018.00214. ISSN 1662-4548. PMC 5920049. PMID 29731704.
- ^ Maher, Pamela (17 December 2020). "Using the Oxytosis/Ferroptosis Pathway to Understand and Treat Age-Associated Neurodegenerative Diseases". Cell Chem Biol. 27 (12): 1456–1471. doi:10.1016/j.chembiol.2020.10.010. PMC 7749085. PMID 33176157.
- ^ a b Friedmann Angeli, Jose Pedro; Schneider, Manuela; Proneth, Bettina; Tyurina, Yulia Y.; Tyurin, Vladimir A.; Hammond, Victoria J.; Herbach, Nadja; Aichler, Michaela; Walch, Axel; Eggenhofer, Elke; Basavarajappa, Devaraj; Rådmark, Olof; Kobayashi, Sho; Seibt, Tobias; Beck, Heike (December 2014). "Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice". Nature Cell Biology. 16 (12): 1180–1191. doi:10.1038/ncb3064. ISSN 1476-4679. PMC 4894846. PMID 25402683.
- ^ a b Co, Hannah K. C.; Wu, Chia-Chou; Lee, Yi-Chen; Chen, Sheng-hong (2024-07-18). "Emergence of large-scale cell death through ferroptotic trigger waves". Nature. 631 (8021): 654–662. Bibcode:2024Natur.631..654C. doi:10.1038/s41586-024-07623-6. ISSN 0028-0836. PMC 11639682. PMID 38987590.
- ^ Jenkins, Nicole L; James, Simon A; Salim, Agus; Sumardy, Fransisca; Speed, Terence P; Conrad, Marcus; Richardson, Des R; Bush, Ashley I; McColl, Gawain (2020-07-21). Gruber, Jan; Tyler, Jessica K (eds.). "Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging Caenorhabditis elegans". eLife. 9: e56580. doi:10.7554/eLife.56580. ISSN 2050-084X. PMC 7373428. PMID 32690135.
- ^ Perez, Marcos A.; Magtanong, Leslie; Dixon, Scott J.; Watts, Jennifer L. (2020-08-24). "Dietary Lipids Induce Ferroptosis in Caenorhabditiselegans and Human Cancer Cells". Developmental Cell. 54 (4): 447–454.e4. doi:10.1016/j.devcel.2020.06.019. ISSN 1534-5807. PMC 7483868. PMID 32652074.
- ^ Distéfano, Ayelén Mariana; Martin, María Victoria; Córdoba, Juan Pablo; Bellido, Andrés Martín; D’Ippólito, Sebastián; Colman, Silvana Lorena; Soto, Débora; Roldán, Juan Alfredo; Bartoli, Carlos Guillermo; Zabaleta, Eduardo Julián; Fiol, Diego Fernando; Stockwell, Brent R.; Dixon, Scott J.; Pagnussat, Gabriela Carolina (2017-01-18). "Heat stress induces ferroptosis-like cell death in plants". Journal of Cell Biology. 216 (2): 463–476. doi:10.1083/jcb.201605110. ISSN 0021-9525. PMC 5294777. PMID 28100685.
- ^ Conrad, Marcus; Kagan, Valerian E.; Bayir, Hülya; Pagnussat, Gabriela C.; Head, Brian; Traber, Maret G.; Stockwell, Brent R. (2018-05-01). "Regulation of lipid peroxidation and ferroptosis in diverse species". Genes & Development. 32 (9–10): 602–619. doi:10.1101/gad.314674.118. ISSN 1549-5477. PMC 6004068. PMID 29802123.
- ^ Aguilera, Anabella; Berdun, Federico; Bartoli, Carlos; Steelheart, Charlotte; Alegre, Matías; Bayir, Hülya; Tyurina, Yulia Y.; Kagan, Valerian E.; Salerno, Graciela; Pagnussat, Gabriela; Martin, María Victoria (2022-02-07). "C-ferroptosis is an iron-dependent form of regulated cell death in cyanobacteria". The Journal of Cell Biology. 221 (2): e201911005. doi:10.1083/jcb.201911005. ISSN 1540-8140. PMC 8624678. PMID 34817556.
- ^ Gutteridge JM (July 1984). "Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide". FEBS Letters. 172 (2): 245–9. Bibcode:1984FEBSL.172..245G. doi:10.1016/0014-5793(84)81134-5. PMID 6086389. S2CID 22040840.
- ^ Minotti, G; Aust, S D (January 1987). "The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide". Journal of Biological Chemistry. 262 (3): 1098–1104. doi:10.1016/S0021-9258(19)75755-X. PMID 3027077.
- ^ Braughler, J M; Duncan, L A; Chase, R L (August 1986). "The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation". Journal of Biological Chemistry. 261 (22): 10282–10289. doi:10.1016/S0021-9258(18)67521-0. PMID 3015924.
- ^ Minotti, G.; Aust, S. D. (1987). "The role of iron in the initiation of lipid peroxidation". Chemistry and Physics of Lipids. 44 (2–4): 191–208. doi:10.1016/0009-3084(87)90050-8. ISSN 0009-3084. PMID 2822270.
- ^ Minotti, G. (1993). "Sources and role of iron in lipid peroxidation". Chemical Research in Toxicology. 6 (2): 134–146. doi:10.1021/tx00032a001. ISSN 0893-228X. PMID 8477003.
- ^ Eagle, Harry (1955-09-16). "Nutrition Needs of Mammalian Cells in Tissue Culture". Science. 122 (3168): 501–504. Bibcode:1955Sci...122..501E. doi:10.1126/science.122.3168.501. ISSN 0036-8075. PMID 13255879.
- ^ Eagle, H.; Piez, K. A.; Oyama, V. I. (May 1961). "The biosynthesis of cystine in human cell cultures". The Journal of Biological Chemistry. 236 (5): 1425–1428. doi:10.1016/S0021-9258(18)64190-0. ISSN 0021-9258. PMID 13725478.
- ^ Yonezawa, M.; Back, S. A.; Gan, X.; Rosenberg, P. A.; Volpe, J. J. (August 1996). "Cystine deprivation induces oligodendroglial death: rescue by free radical scavengers and by a diffusible glial factor". Journal of Neurochemistry. 67 (2): 566–573. doi:10.1046/j.1471-4159.1996.67020566.x. ISSN 0022-3042. PMID 8764581.
- ^ Ratan, R. R.; Murphy, T. H.; Baraban, J. M. (July 1994). "Macromolecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione". The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 14 (7): 4385–4392. doi:10.1523/JNEUROSCI.14-07-04385.1994. ISSN 0270-6474. PMC 6577015. PMID 8027786.
- ^ Bannai, S.; Tsukeda, H.; Okumura, H. (1977-02-21). "Effect of antioxidants on cultured human diploid fibroblasts exposed to cystine-free medium". Biochemical and Biophysical Research Communications. 74 (4): 1582–1588. doi:10.1016/0006-291x(77)90623-4. ISSN 0006-291X. PMID 843380.
- ^ Ursini, F.; Maiorino, M.; Valente, M.; Ferri, L.; Gregolin, C. (February 1982). "Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides". Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism. 710 (2): 197–211. doi:10.1016/0005-2760(82)90150-3. PMID 7066358.
- ^ Ursini, Fulvio; Maiorino, Matilde; Gregolin, Carlo (March 1985). "The selenoenzyme phospholipid hydroperoxide glutathione peroxidase". Biochimica et Biophysica Acta (BBA) - General Subjects. 839 (1): 62–70. doi:10.1016/0304-4165(85)90182-5. PMID 3978121.
- ^ Yant, Levi J; Ran, Qitao; Rao, Lin; Van Remmen, Holly; Shibatani, Toru; Belter, Jason G; Motta, Lucia; Richardson, Arlan; Prolla, Tomas A (February 2003). "The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults". Free Radical Biology and Medicine. 34 (4): 496–502. doi:10.1016/S0891-5849(02)01360-6. PMID 12566075.
- ^ Seiler, Alexander; Schneider, Manuela; Förster, Heidi; Roth, Stephan; Wirth, Eva K.; Culmsee, Carsten; Plesnila, Nikolaus; Kremmer, Elisabeth; Rådmark, Olof; Wurst, Wolfgang; Bornkamm, Georg W.; Schweizer, Ulrich; Conrad, Marcus (September 2008). "Glutathione Peroxidase 4 Senses and Translates Oxidative Stress into 12/15-Lipoxygenase Dependent- and AIF-Mediated Cell Death". Cell Metabolism. 8 (3): 237–248. doi:10.1016/j.cmet.2008.07.005. PMID 18762024.
- ^ Mannes, Alexander M.; Seiler, Alexander; Bosello, Valentina; Maiorino, Matilde; Conrad, Marcus (2011-07). "Cysteine mutant of mammalian GPx4 rescues cell death induced by disruption of the wild‐type selenoenzyme". The FASEB Journal. 25 (7): 2135–2144. doi:10.1096/fj.10-177147. ISSN 0892-6638.
{{cite journal}}
: Check date values in:|date=
(help)CS1 maint: unflagged free DOI (link) - ^ a b Dolma, Sonam; Lessnick, Stephen L.; Hahn, William C.; Stockwell, Brent R. (March 2003). "Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells". Cancer Cell. 3 (3): 285–296. doi:10.1016/s1535-6108(03)00050-3. ISSN 1535-6108. PMID 12676586.
- ^ a b c Yagoda, Nicholas; von Rechenberg, Moritz; Zaganjor, Elma; Bauer, Andras J.; Yang, Wan Seok; Fridman, Daniel J.; Wolpaw, Adam J.; Smukste, Inese; Peltier, John M.; Boniface, J. Jay; Smith, Richard; Lessnick, Stephen L.; Sahasrabudhe, Sudhir; Stockwell, Brent R. (2007-06-14). "RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels". Nature. 447 (7146): 864–868. Bibcode:2007Natur.447..865Y. doi:10.1038/nature05859. ISSN 1476-4687. PMC 3047570. PMID 17568748.
- ^ a b c Yang, Wan Seok; Stockwell, Brent R. (March 2008). "Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells". Chemistry & Biology. 15 (3): 234–245. doi:10.1016/j.chembiol.2008.02.010. ISSN 1074-5521. PMC 2683762. PMID 18355723.
- ^ Mai, Trang Thi; Hamaï, Ahmed; Hienzsch, Antje; Cañeque, Tatiana; Müller, Sebastian; Wicinski, Julien; Cabaud, Olivier; Leroy, Christine; David, Amandine; Acevedo, Verónica; Ryo, Akihide; Ginestier, Christophe; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle; Codogno, Patrice; Mehrpour, Maryam; xRodriguez, Raphaël Rodriguez (Oct 2017). "Salinomycin kills cancer stem cells by sequestering iron in lysosomes". Nature Chemistry. 9 (10): 1025–1033. Bibcode:2017NatCh...9.1025M. doi:10.1038/nchem.2778. PMC 5890907. PMID 28937680.
- ^ a b Yang, Wan Seok; SriRamaratnam, Rohitha; Welsch, Matthew E.; Shimada, Kenichi; Skouta, Rachid; Viswanathan, Vasanthi S.; Cheah, Jaime H.; Clemons, Paul A.; Shamji, Alykhan F.; Clish, Clary B.; Brown, Lewis M.; Girotti, Albert W.; Cornish, Virginia W.; Schreiber, Stuart L.; Stockwell, Brent R. (January 2014). "Regulation of Ferroptotic Cancer Cell Death by GPX4". Cell. 156 (1–2): 317–331. doi:10.1016/j.cell.2013.12.010. PMC 4076414. PMID 24439385.
- ^ Ingold, Irina; Berndt, Carsten; Schmitt, Sabine; Doll, Sebastian; Poschmann, Gereon; Buday, Katalin; Roveri, Antonella; Peng, Xiaoxiao; Porto Freitas, Florencio; Seibt, Tobias; Mehr, Lisa; Aichler, Michaela; Walch, Axel; Lamp, Daniel; Jastroch, Martin (2018-01-25). "Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis". Cell. 172 (3): 409–422.e21. doi:10.1016/j.cell.2017.11.048. ISSN 1097-4172. PMID 29290465.
- ^ a b Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. (November 2019). "The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis". Nature. 575 (7784): 688–692. Bibcode:2019Natur.575..688B. doi:10.1038/s41586-019-1705-2. PMC 6883167. PMID 31634900.
- ^ a b c Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. (November 2019). "FSP1 is a glutathione-independent ferroptosis suppressor" (PDF). Nature. 575 (7784): 693–698. Bibcode:2019Natur.575..693D. doi:10.1038/s41586-019-1707-0. hdl:10044/1/75345. PMID 31634899. S2CID 204833583.
- ^ Kraft VA, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, et al. (January 2020). "GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling". ACS Central Science. 6 (1): 41–53. doi:10.1021/acscentsci.9b01063. PMC 6978838. PMID 31989025.
- ^ Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, et al. (December 2020). "Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers". Nature Chemical Biology. 16 (12): 1351–1360. doi:10.1038/s41589-020-0613-y. PMC 8299533. PMID 32778843.
- ^ Bartolacci, C.; Andreani, C.; El-Gammal, Y.; Scaglioni, P. P. (2021). "Lipid Metabolism Regulates Oxidative Stress and Ferroptosis in RAS-Driven Cancers: A Perspective on Cancer Progression and Therapy". Frontiers in Molecular Biosciences. 8. doi:10.3389/fmolb.2021.706650. PMC 8415548. PMID 34485382.
- ^ Jiang, Xuejun; Stockwell, Brent R.; Conrad, Marcus (2021). "Ferroptosis: mechanisms, biology and role in disease". Nature Reviews. Molecular Cell Biology. 22 (4): 266–282. doi:10.1038/s41580-020-00324-8. PMC 8142022. PMID 33495651.
- ^ Saunders, John W. (1966-11-04). "Death in Embryonic Systems: Death of cells is the usual accompaniment of embryonic growth and differentiation". Science. 154 (3749): 604–612. doi:10.1126/science.154.3749.604. ISSN 0036-8075. PMID 5332319.
- ^ Ghose, Piya; Shaham, Shai (2020-07-24). "Cell death in animal development". Development (Cambridge, England). 147 (14): dev191882. doi:10.1242/dev.191882. ISSN 1477-9129. PMC 7390631. PMID 32709690.
- ^ "Our Pipeline".
- ^ "OUR SCIENCE: Ferroptosis & Inflammation – Targeting oxidative stress and inflammation pathways to treat CNS diseases".
- ^ a b Berndt, Carsten; Alborzinia, Hamed; Amen, Vera Skafar; Ayton, Scott; Barayeu, Uladzimir; Bartelt, Alexander; Bayir, Hülya; Bebber, Christina M.; Birsoy, Kivanc; Böttcher, Jan P.; Brabletz, Simone; Brabletz, Thomas; Brown, Ashley R.; Brüne, Bernhard; Bulli, Giorgia (September 2024). "Ferroptosis in health and disease". Redox Biology. 75: 103211. doi:10.1016/j.redox.2024.103211. ISSN 2213-2317. PMC 11253697. PMID 38908072.
- ^ Lei, Guang; Zhuang, Li; Gan, Boyi (July 2022). "Targeting ferroptosis as a vulnerability in cancer". Nature Reviews Cancer. 22 (7): 381–396. doi:10.1038/s41568-022-00459-0. ISSN 1474-1768. PMC 10243716. PMID 35338310.
- ^ Ma S, Dielschneider RF, Henson ES, Xiao W, Choquette TR, Blankstein AR, et al. (2017). "Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells". PLOS ONE. 12 (8): e0182921. Bibcode:2017PLoSO..1282921M. doi:10.1371/journal.pone.0182921. PMC 5565111. PMID 28827805.
- ^ Yeung, Yoyo Wing Suet; Ma, Yeping; Deng, Yanlin; Khoo, Bee Luan; Chua, Song Lin (2024-08-12). "Bacterial Iron Siderophore Drives Tumor Survival and Ferroptosis Resistance in a Biofilm-Tumor Spheroid Coculture Model". Advanced Science. 11 (39): e2404467. doi:10.1002/advs.202404467. ISSN 2198-3844. PMC 11496991. PMID 39135304.
- ^ Zheng, Xiaofeng; Carstens, Julienne L.; Kim, Jiha; Scheible, Matthew; Kaye, Judith; Sugimoto, Hikaru; Wu, Chia-Chin; LeBleu, Valerie S.; Kalluri, Raghu (2015-11-26). "Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer". Nature. 527 (7579): 525–530. Bibcode:2015Natur.527..525Z. doi:10.1038/nature16064. ISSN 1476-4687. PMC 4849281. PMID 26560028.
- ^ Fischer, Kari R.; Durrans, Anna; Lee, Sharrell; Sheng, Jianting; Li, Fuhai; Wong, Stephen T. C.; Choi, Hyejin; El Rayes, Tina; Ryu, Seongho; Troeger, Juliane; Schwabe, Robert F.; Vahdat, Linda T.; Altorki, Nasser K.; Mittal, Vivek; Gao, Dingcheng (2015-11-26). "Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance". Nature. 527 (7579): 472–476. Bibcode:2015Natur.527..472F. doi:10.1038/nature15748. ISSN 1476-4687. PMC 4662610. PMID 26560033.
- ^ Shibue, Tsukasa; Weinberg, Robert A. (2017-04-11). "EMT, CSCs, and drug resistance: the mechanistic link and clinical implications". Nature Reviews. Clinical Oncology. 14 (10): 611–629. doi:10.1038/nrclinonc.2017.44. PMC 5720366. PMID 28397828.
- ^ Hangauer, Matthew J.; Viswanathan, Vasanthi S.; Ryan, Matthew J.; Bole, Dhruv; Eaton, John K.; Matov, Alexandre; Galeas, Jacqueline; Dhruv, Harshil D.; Berens, Michael E.; Schreiber, Stuart L.; McCormick, Frank; McManus, Michael T. (2017-11-09). "Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition". Nature. 551 (7679): 247–250. Bibcode:2017Natur.551..247H. doi:10.1038/nature24297. ISSN 1476-4687. PMC 5933935. PMID 29088702.
- ^ a b Viswanathan, Vasanthi S.; Ryan, Matthew J.; Dhruv, Harshil D.; Gill, Shubhroz; Eichhoff, Ossia M.; Seashore-Ludlow, Brinton; Kaffenberger, Samuel D.; Eaton, John K.; Shimada, Kenichi; Aguirre, Andrew J.; Viswanathan, Srinivas R.; Chattopadhyay, Shrikanta; Tamayo, Pablo; Yang, Wan Seok; Rees, Matthew G. (July 2017). "Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway". Nature. 547 (7664): 453–457. doi:10.1038/nature23007. ISSN 1476-4687. PMC 5667900. PMID 28678785.
- ^ Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (August 2017). "Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration". Redox Biology. 12: 8–17. doi:10.1016/j.redox.2017.01.021. PMC 5312549. PMID 28212525.
- ^ Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, Wang J (July 2019). "Ferroptosis and Its Role in Diverse Brain Diseases". Molecular Neurobiology. 56 (7): 4880–4893. doi:10.1007/s12035-018-1403-3. PMC 6506411. PMID 30406908.
- ^ Ryan, Sean K.; Ugalde, Cathryn L.; Rolland, Anne-Sophie; Skidmore, John; Devos, David; Hammond, Timothy R. (2023). "Therapeutic inhibition of ferroptosis in neurodegenerative disease". Trends in Pharmacological Sciences. 44 (10): 674–688. doi:10.1016/j.tips.2023.07.007. PMID 37657967.
- ^ Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, et al. (April 2017). "Inhibition of neuronal ferroptosis protects hemorrhagic brain". JCI Insight. 2 (7): e90777. doi:10.1172/jci.insight.90777. PMC 5374066. PMID 28405617.
- ^ Li Q, Weiland A, Chen X, Lan X, Han X, Durham F, et al. (July 2018). "Ultrastructural Characteristics of Neuronal Death and White Matter Injury in Mouse Brain Tissues After Intracerebral Hemorrhage: Coexistence of Ferroptosis, Autophagy, and Necrosis". Frontiers in Neurology. 9: 581. doi:10.3389/fneur.2018.00581. PMC 6056664. PMID 30065697.
- ^ Qin D, Wang J, Le A, Wang TJ, Chen X, Wang J (April 2021). "Traumatic Brain Injury: Ultrastructural Features in Neuronal Ferroptosis, Glial Cell Activation and Polarization, and Blood-Brain Barrier Breakdown". Cells. 10 (5): 1009. doi:10.3390/cells10051009. PMC 8146242. PMID 33923370.
- ^ Skouta, Rachid; Dixon, Scott J.; Wang, Jianlin; Dunn, Denise E.; Orman, Marina; Shimada, Kenichi; Rosenberg, Paul A.; Lo, Donald C.; Weinberg, Joel M.; Linkermann, Andreas; Stockwell, Brent R. (2014-03-26). "Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models". Journal of the American Chemical Society. 136 (12): 4551–4556. doi:10.1021/ja411006a. ISSN 1520-5126. PMC 3985476. PMID 24592866.
- ^ Linkermann, Andreas; Skouta, Rachid; Himmerkus, Nina; Mulay, Shrikant R.; Dewitz, Christin; De Zen, Federica; Prokai, Agnes; Zuchtriegel, Gabriele; Krombach, Fritz; Welz, Patrick-Simon; Weinlich, Ricardo; Vanden Berghe, Tom; Vandenabeele, Peter; Pasparakis, Manolis; Bleich, Markus (2014-11-25). "Synchronized renal tubular cell death involves ferroptosis". Proceedings of the National Academy of Sciences of the United States of America. 111 (47): 16836–16841. doi:10.1073/pnas.1415518111. ISSN 1091-6490. PMC 4250130. PMID 25385600.
- ^ a b Tonnus, Wulf; Meyer, Claudia; Steinebach, Christian; Belavgeni, Alexia; von Mässenhausen, Anne; Gonzalez, Nadia Zamora; Maremonti, Francesca; Gembardt, Florian; Himmerkus, Nina; Latk, Markus; Locke, Sophie; Marschner, Julian; Li, Wenjun; Short, Spencer; Doll, Sebastian (2021-07-20). "Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury". Nature Communications. 12 (1): 4402. doi:10.1038/s41467-021-24712-6. ISSN 2041-1723.
- ^ Wang, Yue; Zhang, Menghan; Bi, Ran; Su, Yali; Quan, Fei; Lin, Yanting; Yue, Chongxiu; Cui, Xinmeng; Zhao, Qixiang; Liu, Siliang; Yang, Yong; Zhang, Dayong; Cao, Qiuhua; Gao, Xinghua (2022-05-01). "ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury". Redox Biology. 51: 102262. doi:10.1016/j.redox.2022.102262. ISSN 2213-2317.
- ^ Tadokoro, Tomonori; Ikeda, Masataka; Ide, Tomomi; Deguchi, Hiroko; Ikeda, Soichiro; Okabe, Kosuke; Ishikita, Akihito; Matsushima, Shouji; Koumura, Tomoko; Yamada, Ken-Ichi; Imai, Hirotaka; Tsutsui, Hiroyuki (2020-05-07). "Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity". JCI insight. 5 (9): e132747, 132747. doi:10.1172/jci.insight.132747. ISSN 2379-3708. PMC 7253028. PMID 32376803.
- ^ Mishima, Eikan; Sato, Emiko; Ito, Junya; Yamada, Ken-Ichi; Suzuki, Chitose; Oikawa, Yoshitsugu; Matsuhashi, Tetsuro; Kikuchi, Koichi; Toyohara, Takafumi; Suzuki, Takehiro; Ito, Sadayoshi; Nakagawa, Kiyotaka; Abe, Takaaki (2020-02). "Drugs Repurposed as Antiferroptosis Agents Suppress Organ Damage, Including AKI, by Functioning as Lipid Peroxyl Radical Scavengers". Journal of the American Society of Nephrology: JASN. 31 (2): 280–296. doi:10.1681/ASN.2019060570. ISSN 1533-3450. PMC 7003311. PMID 31767624.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Ikeda, Yasumasa; Hamano, Hirofumi; Horinouchi, Yuya; Miyamoto, Licht; Hirayama, Tasuku; Nagasawa, Hideko; Tamaki, Toshiaki; Tsuchiya, Koichiro (2021-09). "Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice". Journal of trace elements in medicine and biology: organ of the Society for Minerals and Trace Elements (GMS). 67: 126798. doi:10.1016/j.jtemb.2021.126798. ISSN 1878-3252. PMID 34087581.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Zeng, Fantian; Nijiati, Sureya; Liu, Yangtengyu; Yang, Qinqin; Liu, Xiaomin; Zhang, Qianyu; Chen, Shi; Su, Anqi; Xiong, Hehe; Shi, Changrong; Cai, Congbo; Lin, Zhongning; Chen, Xiaoyuan; Zhou, Zijian (2023-03-10). "Ferroptosis MRI for early detection of anticancer drug–induced acute cardiac/kidney injuries". Science Advances. 9 (10). doi:10.1126/sciadv.add8539. ISSN 2375-2548. PMC 9995079. PMID 36888714.
{{cite journal}}
: CS1 maint: PMC format (link) - ^ Wang, Ping; Lu, Yuan-Qiang (2022-05-10). "Ferroptosis: A Critical Moderator in the Life Cycle of Immune Cells". Frontiers in Immunology. 13. doi:10.3389/fimmu.2022.877634. ISSN 1664-3224. PMC 9127082. PMID 35619718.
- ^ Chen, Xin; Kang, Rui; Kroemer, Guido; Tang, Daolin (2021-05-12). "Ferroptosis in infection, inflammation, and immunity". Journal of Experimental Medicine. 218 (6): e20210518. doi:10.1084/jem.20210518. ISSN 0022-1007. PMC 8126980. PMID 33978684.
- ^ Kaul, Arvind; Gordon, Caroline; Crow, Mary K.; Touma, Zahi; Urowitz, Murray B.; van Vollenhoven, Ronald; Ruiz-Irastorza, Guillermo; Hughes, Graham (2016-06-16). "Systemic lupus erythematosus". Nature Reviews Disease Primers. 2 (1): 1–21. doi:10.1038/nrdp.2016.39. ISSN 2056-676X. PMID 27306639.
- ^ Lande, Roberto; Ganguly, Dipyaman; Facchinetti, Valeria; Frasca, Loredana; Conrad, Curdin; Gregorio, Josh; Meller, Stephan; Chamilos, Georgios; Sebasigari, Rosalie; Riccieri, Valeria; Bassett, Roland; Amuro, Hideki; Fukuhara, Shirou; Ito, Tomoki; Liu, Yong-Jun (2011-03-09). "Neutrophils Activate Plasmacytoid Dendritic Cells by Releasing Self-DNA–Peptide Complexes in Systemic Lupus Erythematosus". Science Translational Medicine. 3 (73). doi:10.1126/scitranslmed.3001180. ISSN 1946-6234. PMC 3399524. PMID 21389263.
- ^ Garcia-Romo, Gina S.; Caielli, Simone; Vega, Barbara; Connolly, John; Allantaz, Florence; Xu, Zhaohui; Punaro, Marilynn; Baisch, Jeanine; Guiducci, Cristiana; Coffman, Robert L.; Barrat, Franck J.; Banchereau, Jacques; Pascual, Virginia (2011-03-09). "Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus". Science Translational Medicine. 3 (73): 73ra20. doi:10.1126/scitranslmed.3001201. ISSN 1946-6242. PMC 3143837. PMID 21389264.
- ^ Lood, Christian; Blanco, Luz P.; Purmalek, Monica M.; Carmona-Rivera, Carmelo; De Ravin, Suk S.; Smith, Carolyne K.; Malech, Harry L.; Ledbetter, Jeffrey A.; Elkon, Keith B.; Kaplan, Mariana J. (February 2016). "Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease". Nature Medicine. 22 (2): 146–153. doi:10.1038/nm.4027. ISSN 1546-170X. PMC 4742415. PMID 26779811.
- ^ Li, Pengchong; Jiang, Mengdi; Li, Ketian; Li, Hao; Zhou, Yangzhong; Xiao, Xinyue; Xu, Yue; Krishfield, Suzanne; Lipsky, Peter E.; Tsokos, George C.; Zhang, Xuan (2021-08-12). "Glutathione peroxidase 4 regulated neutrophil ferroptosis induces systemic autoimmunity". Nature Immunology. 22 (9): 1107. doi:10.1038/s41590-021-00993-3. PMC 8609402. PMID 34385713.
- ^ Jostins, Luke; Ripke, Stephan; Weersma, Rinse K.; Duerr, Richard H.; McGovern, Dermot P.; Hui, Ken Y.; Lee, James C.; Schumm, L. Philip; Sharma, Yashoda; Anderson, Carl A.; Essers, Jonah; Mitrovic, Mitja; Ning, Kaida; Cleynen, Isabelle; Theatre, Emilie (2012-11-01). "Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease". Nature. 491 (7422): 119–124. doi:10.1038/nature11582. ISSN 1476-4687. PMC 3491803. PMID 23128233.
- ^ a b Mayr, Lisa; Grabherr, Felix; Schwärzler, Julian; Reitmeier, Isabelle; Sommer, Felix; Gehmacher, Thomas; Niederreiter, Lukas; He, Gui-Wei; Ruder, Barbara; Kunz, Kai T. R.; Tymoszuk, Piotr; Hilbe, Richard; Haschka, David; Feistritzer, Clemens; Gerner, Romana R. (2020-04-14). "Dietary lipids fuel GPX4-restricted enteritis resembling Crohn's disease". Nature Communications. 11 (1): 1775. doi:10.1038/s41467-020-15646-6. ISSN 2041-1723. PMC 7156516. PMID 32286299.
- ^ Weïwer, Michel; Bittker, Joshua A.; Lewis, Timothy A.; Shimada, Kenichi; Yang, Wan Seok; MacPherson, Lawrence; Dandapani, Sivaraman; Palmer, Michelle; Stockwell, Brent R.; Schreiber, Stuart L.; Munoz, Benito (2012-02-15). "Development of small-molecule probes that selectively kill cells induced to express mutant RAS". Bioorganic & Medicinal Chemistry Letters. 22 (4): 1822–1826. doi:10.1016/j.bmcl.2011.09.047. ISSN 1464-3405. PMC 3528973. PMID 22297109.
- ^ Larraufie, Marie-Helene; Yang, Wan Seok; Jiang, Elise; Thomas, Ajit G.; Slusher, Barbara S.; Stockwell, Brent R. (2015-11-01). "Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility". Bioorganic & Medicinal Chemistry Letters. 25 (21): 4787–4792. doi:10.1016/j.bmcl.2015.07.018. ISSN 1464-3405. PMC 4653046. PMID 26231156.
- ^ Zhang, Yan; Tan, Hui; Daniels, Jacob D.; Zandkarimi, Fereshteh; Liu, Hengrui; Brown, Lewis M.; Uchida, Koji; O'Connor, Owen A.; Stockwell, Brent R. (May 2019). "Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model". Cell Chemical Biology. 26 (5): 623–633.e9. doi:10.1016/j.chembiol.2019.01.008. ISSN 2451-9456. PMC 6525071. PMID 30799221.
- ^ Yang, Wan Seok; SriRamaratnam, Rohitha; Welsch, Matthew E.; Shimada, Kenichi; Skouta, Rachid; Viswanathan, Vasanthi S.; Cheah, Jaime H.; Clemons, Paul A.; Shamji, Alykhan F.; Clish, Clary B.; Brown, Lewis M.; Girotti, Albert W.; Cornish, Virginia W.; Schreiber, Stuart L.; Stockwell, Brent R. (2014-01-16). "Regulation of ferroptotic cancer cell death by GPX4". Cell. 156 (1–2): 317–331. doi:10.1016/j.cell.2013.12.010. ISSN 1097-4172. PMC 4076414. PMID 24439385.
- ^ Liu, Hengrui; Forouhar, Farhad; Lin, Annie J.; Wang, Qian; Polychronidou, Vasiliki; Soni, Rajesh Kumar; Xia, Xin; Stockwell, Brent R. (2022-12-15). "Small-molecule allosteric inhibitors of GPX4". Cell Chemical Biology. 29 (12): 1680–1693.e9. doi:10.1016/j.chembiol.2022.11.003. ISSN 2451-9448. PMC 9772252. PMID 36423641.
- ^ a b Cheff, Dorian M.; Huang, Chuying; Scholzen, Karoline C.; Gencheva, Radosveta; Ronzetti, Michael H.; Cheng, Qing; Hall, Matthew D.; Arnér, Elias S. J. (June 2023). "The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1". Redox Biology. 62: 102703. doi:10.1016/j.redox.2023.102703. ISSN 2213-2317. PMC 10149367. PMID 37087975.
- ^ Vučković, Ana-Marija; Bosello Travain, Valentina; Bordin, Luciana; Cozza, Giorgio; Miotto, Giovanni; Rossetto, Monica; Toppo, Stefano; Venerando, Rina; Zaccarin, Mattia; Maiorino, Matilde; Ursini, Fulvio; Roveri, Antonella (February 2020). "Inactivation of the glutathione peroxidase GPx4 by the ferroptosis-inducing molecule RSL3 requires the adaptor protein 14-3-3ε". FEBS Letters. 594 (4): 611–624. doi:10.1002/1873-3468.13631. hdl:11577/3310112. ISSN 1873-3468. PMID 31581313.
- ^ DeAngelo, Stephen L.; Zhao, Liang; Dziechciarz, Sofia; Shin, Myungsun; Solanki, Sumeet; Balia, Andrii; El-Derany, Marwa O.; Castillo, Cristina; Qin, Yao; Das, Nupur K.; Bell, Hannah Noelle; Paulo, Joao A.; Zhang, Yuezhong; Rossiter, Nicholas J.; McCulla, Elizabeth C. (2024-08-27). "Recharacterization of RSL3 reveals that the selenoproteome is a druggable target in colorectal cancer". BioRxiv: The Preprint Server for Biology: 2024.03.29.587381. doi:10.1101/2024.03.29.587381. ISSN 2692-8205. PMC 11014488. PMID 38617233.
- ^ Eaton, John K.; Furst, Laura; Ruberto, Richard A.; Moosmayer, Dieter; Hilpmann, André; Ryan, Matthew J.; Zimmermann, Katja; Cai, Luke L.; Niehues, Michael; Badock, Volker; Kramm, Anneke; Chen, Sixun; Hillig, Roman C.; Clemons, Paul A.; Gradl, Stefan (May 2020). "Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles". Nature Chemical Biology. 16 (5): 497–506. doi:10.1038/s41589-020-0501-5. ISSN 1552-4469. PMC 7251976. PMID 32231343.
- ^ Eaton, John K.; Furst, Laura; Ruberto, Richard A.; Moosmayer, Dieter; Hilpmann, André; Ryan, Matthew J.; Zimmermann, Katja; Cai, Luke L.; Niehues, Michael; Badock, Volker; Kramm, Anneke; Chen, Sixun; Hillig, Roman C.; Clemons, Paul A.; Gradl, Stefan (May 2020). "Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles". Nature Chemical Biology. 16 (5): 497–506. doi:10.1038/s41589-020-0501-5. ISSN 1552-4469. PMC 7251976. PMID 32231343.
- ^ a b Hendricks, Joseph M.; Doubravsky, Cody E.; Wehri, Eddie; Li, Zhipeng; Roberts, Melissa A.; Deol, Kirandeep K.; Lange, Mike; Lasheras-Otero, Irene; Momper, Jeremiah D.; Dixon, Scott J.; Bersuker, Kirill; Schaletzky, Julia; Olzmann, James A. (2023-09-21). "Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis". Cell Chemical Biology. 30 (9): 1090–1103.e7. doi:10.1016/j.chembiol.2023.04.007. ISSN 2451-9448. PMC 10524360. PMID 37178691.
- ^ a b Nakamura, Toshitaka; Mishima, Eikan; Yamada, Naoya; Mourão, André Santos Dias; Trümbach, Dietrich; Doll, Sebastian; Wanninger, Jonas; Lytton, Elena; Sennhenn, Peter; Nishida Xavier da Silva, Thamara; Angeli, José Pedro Friedmann; Sattler, Michael; Proneth, Bettina; Conrad, Marcus (November 2023). "Integrated chemical and genetic screens unveil FSP1 mechanisms of ferroptosis regulation". Nature Structural & Molecular Biology. 30 (11): 1806–1815. doi:10.1038/s41594-023-01136-y. ISSN 1545-9985. PMC 10643123. PMID 37957306.
- ^ Yoshioka, Hiromasa; Kawamura, Tatsuro; Muroi, Makoto; Kondoh, Yasumitsu; Honda, Kaori; Kawatani, Makoto; Aono, Harumi; Waldmann, Herbert; Watanabe, Nobumoto; Osada, Hiroyuki (2022-02-18). "Identification of a Small Molecule That Enhances Ferroptosis via Inhibition of Ferroptosis Suppressor Protein 1 (FSP1)". ACS Chemical Biology. 17 (2): 483–491. doi:10.1021/acschembio.2c00028. ISSN 1554-8929. PMID 35128925.
- ^ Nakamura, Toshitaka; Hipp, Clara; Santos Dias Mourão, André; Borggräfe, Jan; Aldrovandi, Maceler; Henkelmann, Bernhard; Wanninger, Jonas; Mishima, Eikan; Lytton, Elena; Emler, David; Proneth, Bettina; Sattler, Michael; Conrad, Marcus (July 2023). "Phase separation of FSP1 promotes ferroptosis". Nature. 619 (7969): 371–377. Bibcode:2023Natur.619..371N. doi:10.1038/s41586-023-06255-6. ISSN 1476-4687. PMC 10338336. PMID 37380771.
- ^ Bersuker, Kirill; Hendricks, Joseph M.; Li, Zhipeng; Magtanong, Leslie; Ford, Breanna; Tang, Peter H.; Roberts, Melissa A.; Tong, Bingqi; Maimone, Thomas J.; Zoncu, Roberto; Bassik, Michael C.; Nomura, Daniel K.; Dixon, Scott J.; Olzmann, James A. (November 2019). "The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis". Nature. 575 (7784): 688–692. Bibcode:2019Natur.575..688B. doi:10.1038/s41586-019-1705-2. ISSN 1476-4687. PMC 6883167. PMID 31634900.
- ^ Zhu, Haiying; Cen, Jie; Hong, Chenggang; Wang, Haiyang; Wen, Yuanmei; He, Qiaojun; Yu, Yongping; Cao, Ji; Chen, Wenteng (2023-06-16). "Targeting Labile Iron-Mediated Ferroptosis Provides a Potential Therapeutic Strategy for Rhabdomyolysis-Induced Acute Kidney Injury". ACS Chemical Biology. 18 (6): 1294–1304. doi:10.1021/acschembio.2c00914. ISSN 1554-8929. PMID 37172039.