In mathematics, an automorphic function is a function on a space that is invariant under the action of some group, in other words a function on the quotient space. Often the space is a complex manifold and the group is a discrete group.

Factor of automorphy

edit

In mathematics, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. Suppose a group   acts on a complex-analytic manifold  . Then,   also acts on the space of holomorphic functions from   to the complex numbers. A function   is termed an automorphic form if the following holds:

 

where   is an everywhere nonzero holomorphic function. Equivalently, an automorphic form is a function whose divisor is invariant under the action of  .

The factor of automorphy for the automorphic form   is the function  . An automorphic function is an automorphic form for which   is the identity.

Some facts about factors of automorphy:

  • Every factor of automorphy is a cocycle for the action of   on the multiplicative group of everywhere nonzero holomorphic functions.
  • The factor of automorphy is a coboundary if and only if it arises from an everywhere nonzero automorphic form.
  • For a given factor of automorphy, the space of automorphic forms is a vector space.
  • The pointwise product of two automorphic forms is an automorphic form corresponding to the product of the corresponding factors of automorphy.

Relation between factors of automorphy and other notions:

  • Let   be a lattice in a Lie group  . Then, a factor of automorphy for   corresponds to a line bundle on the quotient group  . Further, the automorphic forms for a given factor of automorphy correspond to sections of the corresponding line bundle.

The specific case of   a subgroup of SL(2, R), acting on the upper half-plane, is treated in the article on automorphic factors.

Examples

edit

References

edit
  • A.N. Parshin (2001) [1994], "Automorphic Form", Encyclopedia of Mathematics, EMS Press
  • Andrianov, A.N.; Parshin, A.N. (2001) [1994], "Automorphic Function", Encyclopedia of Mathematics, EMS Press
  • Ford, Lester R. (1929), Automorphic functions, New York, McGraw-Hill, ISBN 978-0-8218-3741-2, JFM 55.0810.04
  • Fricke, Robert; Klein, Felix (1897), Vorlesungen über die Theorie der automorphen Functionen. Erster Band; Die gruppentheoretischen Grundlagen. (in German), Leipzig: B. G. Teubner, ISBN 978-1-4297-0551-6, JFM 28.0334.01
  • Fricke, Robert; Klein, Felix (1912), Vorlesungen über die Theorie der automorphen Functionen. Zweiter Band: Die funktionentheoretischen Ausführungen und die Anwendungen. 1. Lieferung: Engere Theorie der automorphen Funktionen. (in German), Leipzig: B. G. Teubner., ISBN 978-1-4297-0552-3, JFM 32.0430.01