skip to main content
10.1145/2501511.2501525acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Storygraph: extracting patterns from spatio-temporal data

Published: 11 August 2013 Publication History

Abstract

Analysis of spatio-temporal data often involves correlating different events in time and location to uncover relationships between them. It is also desirable to identify different patterns in the data. Visualizing time and space in the same chart is not trivial. Common methods includes plotting the latitude, longitude and time as three dimensions of a 3D chart. Drawbacks of these 3D charts include not being able to scale well due to cluttering, occlusion and difficulty to track time in case of clustered events. In this paper we present a novel 2D visualization technique called Storygraph which provides an integrated view of time and location to address these issues. We also present storylines based on Storygraph which show movement of the actors over time. Lastly, we present case studies to show the applications of Storygraph.

References

[1]
G. Adrienko, N. Adrienko, M. Mladenov, M. Mock, and C. Politz. Identifying place histories from activity traces with an eye to parameter impact. IEEE Transactions on Visualization and Computer Graphics, 18(5):675--688, May 2012.
[2]
W. Aigner, S. Miksch, W. Muller, H. Schumann, and C. Tominski. Visualizing time-oriented data - a systematic view. Computers and Graphics, 31(3):401--409, 2007.
[3]
W. Aigner, S. Miksch, W. Muller, H. Schumann, and C. Tominski. Visual methods for analyzing time-oriented data. IEEE Transactions on Visualization and Computer Graphics, 14(1):47--60, jan.-feb. 2008.
[4]
G. Andrienko, N. Andrienko, and S. Wrobel. Visual analytics tools for analysis of movement data. ACM SIGKDD Explorations Newsletter, 9(2):38--46, 2007.
[5]
N. Andrienko, G. Andrienko, and P. Gatalsky. Visualization of spatio-temporal information in the internet. In Proceedings of 11th International Workshop on Database and Expert Systems Applications, pages 577--585, 2000.
[6]
A. O. Artero, M. C. F. de Oliveira, and H. Levkowitz. Uncovering clusters in crowded parallel coordinates visualizations. In Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on, pages 81--88. IEEE, 2004.
[7]
A. Asgary, A. Ghaffari, and J. Levy. Spatial and temporal analyses of structural fire incidents and their causes: A case of Toronto, Canada. Fire Safety Journal, 45(1):44--57, 2010.
[8]
C. Brunsdon, J. Corcoran, and G. Higgs. Visualising space and time in crime patterns: A comparison of methods. Computers, Environment and Urban Systems, 31(1):52--75, 2007.
[9]
U. Demsar and K. Virrantaus. Space-time density of trajectories: exploring spatio-temporal patterns in movement data. International Journal of Geographical Information Science, 24(10):1527--1542, 2010.
[10]
D. Fisher, A. Hoff, G. Robertson, and M. Hurst. Narratives: A visualization to track narrative events as they develop. In Proceedings of IEEE Symposium on Visual Analytics Science and Technology, pages 115--122, oct. 2008.
[11]
A. Fredrikson, C. North, C. Plaisant, and B. Shneiderman. Temporal, geographical and categorical aggregations viewed through coordinated displays: a case study with highway incident data. In Proceedings of the 1999 workshop on new paradigms in information visualization and manipulation in conjunction with the eighth ACM internation conference on Information and knowledge management, NPIVM '99, pages 26--34, New York, NY, USA, 1999. ACM.
[12]
P. Gatalsky, N. Andrienko, and G. Andrienko. Interactive analysis of event data using space-time cube. In Proceedings. Eighth International Conference on Information Visualisation, pages 145--152, july 2004.
[13]
Z. Geng, Z. Peng, R. Laramee, R. Walker, and J. Roberts. Angular histograms: Frequency-based visualizations for large, high dimensional data. IEEE Transactions on Visualization and Computer Graphics, 17(12):2572--2580, dec. 2011.
[14]
T. Gschwandtner, W. Aigner, K. Kaiser, S. Miksch, and A. Seyfang. CareCruiser: Exploring and visualizing plans, events, and effects interactively. In Proceedings of IEEE Pacific Visualization Symposium (PacificVis), pages 43--50, march 2011.
[15]
Guardian.co.uk. Afghanistan war logs 2003-2010, July 2010.
[16]
T. Hägerstrand et al. Time-geography: focus on the corporeality of man, society, and environment. The science and praxis of complexity, pages 193--216, 1985.
[17]
M. Harrower and C. Brewer. Colorbrewer. org: an online tool for selecting colour schemes for maps. Cartographic Journal, The, 40(1):27--37, 2003.
[18]
K. Hinum, S. Miksch, W. Aigner, S. Ohmann, C. Popow, M. Pohl, and M. Rester. Gravi++: Interactive information visualization of highly structured temporal data. Workshop IDAMAP 2005 Intelligent Data Analysis in Medicine and Pharmacology, pages 67--72, 2005.
[19]
T.-H. Hsieh, J.-J. J. Chen, L.-H. Chen, P.-T. Chiang, and H.-Y. Lee. Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion. Behavioural Brain Research, 222(1):1--9, 2011.
[20]
W. Javed, B. McDonnel, and N. Elmqvist. Graphical perception of multiple time series. IEEE Transactions on Visualization and Computer Graphics, 16(6):927--934, nov.-dec. 2010.
[21]
M. Jern and J. Franzen. GeoAnalytics - exploring spatio-temporal and multivariate data. In Proceedings of Tenth International Conference on Information Visualization, pages 25--31, july 2006.
[22]
T. Kapler and W. Wright. Geotime information visualization. Information Visualization, 4(2):136--146, 2005.
[23]
M. Krstajic, E. Bertini, and D. Keim. CloudLines: Compact display of event episodes in multiple time-series. IEEE Transactions on Visualization and Computer Graphics, 17(12):2432--2439, dec. 2011.
[24]
T. V. Landesberger, S. Bremm, N. Andrienko, G. Adrienko, and M. Tekusova. Visual analytics for categoric spatio-temporal data. In Proceedings of IEEE Conference on Visual Analytics Science and Technology (VAST 2012), pages 183--192, October 2012.
[25]
M. Lanzenberger, S. Miksch, and M. Pohl. The Stardinates - visualizing highly structured data. In Proceedings of Seventh International Conference on Information Visualization (IV 2003), pages 47--52, july 2003.
[26]
M. Lanzenberger, S. Miksch, and M. Pohl. Exploring highly structured data: a comparative study of stardinates and parallel coordinates. In Proceedings. Ninth International Conference on Information Visualisation, pages 312--320, july 2005.
[27]
U. Lao. Lao national unexploded ordnance programme, 2011.
[28]
R. Maciejewski, S. Rudolph, R. Hafen, A. Abusalah, M. Yakout, M. Ouzzani, W. Cleveland, S. Grannis, and D. Ebert. A visual analytics approach to understanding spatiotemporal hotspots. IEEE Transactions on Visualization and Computer Graphics, 16(2):205--220, march-april 2010.
[29]
A. Murray, Y. Liu, S. Rey, and L. Anselin. Exploring movement object patterns. The Annals of Regional Science, pages 1--14, 2012. 10.1007/s00168-011-0459-z.
[30]
D. Orellana, A. K. Bregt, A. Ligtenberg, and M. Wachowicz. Exploring visitor movement patterns in natural recreational areas. Tourism Management, 33(3):672--682, 2012.
[31]
C. Plug, J. C. Xia, and C. Caulfield. Spatial and temporal visualisation techniques for crash analysis. Accident Analysis and Prevention, 43(6):1937--1946, 2011.
[32]
L. N. U. O. Programme. Annual report 2007, 2008.
[33]
S. Rinzivillo, D. Pedreschi, M. Nanni, F. Giannotti, N. Andrienko, and G. Andrienko. Visually driven analysis of movement data by progressive clustering. Information Visualization, 7(3-4):225--239, 2008.
[34]
Y. Tanahashi and K.-L. Ma. Design considerations for optimizing storyline visualizations. Visualization and Computer Graphics, IEEE Transactions on, 18(12):2679--2688, 2012.
[35]
C. Tominski, P. Schulze-Wollgast, and H. Schumann. 3D information visualization for time dependent data on maps. In Proceedings. Ninth International Conference on Information Visualisation, pages 175--181, july 2005.
[36]
E. R. Tufte. Beautiful evidence, volume 23. Graphics Press Cheshire, CT, 2006.
[37]
K. Vrotsou, J. Johansson, and M. Cooper. ActiviTree: Interactive visual exploration of sequences in event-based data using graph similarity. IEEE Transactions on Visualization and Computer Graphics, 15(6):945--952, nov.-dec. 2009.
[38]
Wikileaks. Cablegate's cables, 2010.
[39]
J. Zhao, F. Chevalier, E. Pietriga, and R. Balakrishnan. Exploratory analysis of time-series with ChronoLenses. IEEE Transactions on Visualization and Computer Graphics, 17(12):2422--2431, dec. 2011.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
IDEA '13: Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics
August 2013
104 pages
ISBN:9781450323291
DOI:10.1145/2501511
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 August 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. information visualization
  2. spatio-temporal visualization

Qualifiers

  • Research-article

Funding Sources

Conference

KDD' 13
Sponsor:

Acceptance Rates

IDEA '13 Paper Acceptance Rate 11 of 25 submissions, 44%;
Overall Acceptance Rate 11 of 25 submissions, 44%

Upcoming Conference

KDD '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)18
  • Downloads (Last 6 weeks)3
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media