skip to main content
research-article

A SemiSmooth Newton Method for Semidefinite Programs and its Applications in Electronic Structure Calculations

Published: 01 January 2018 Publication History

Abstract

The well-known interior point method for semidefinite progams can only be used to tackle problems of relatively small scales. First-order methods such as the the alternating direction method of multipliers (ADMM) have much lower computational cost per iteration. However, their convergence can be slow, especially for obtaining highly accurate approximations. In this paper, we present a practical and efficient second-order semismooth Newton type method based on solving a fixed-point mapping derived from an equivalent form of the ADMM. We discuss a number of techniques that can be used to improve the computational efficiency of the method and achieve global convergence. Then we further consider the application in electronic structure calculations. The ground state energy of a many-electron system can be approximated by an variational approach in which the total energy of the system is minimized with respect to one- and two-body reduced density matrices instead of many-electron wavefunctions. This problem can be formulated as a semidefinite programming problem. Extensive numerical experiments show that our approach is competitive to the state-of-the-art methods in terms of both accuracy and speed.

References

[1]
H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, New York, 2011, https://doi.org/10.1007/978-1-4419-9467-7.
[2]
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found Trends Mach. Learn., 3 (2011), pp. 1--122.
[3]
B. J. Braams, J. K. Percus, and Z. Zhao, The t1 and t2 representability conditions, in Reduced-Density-Matrix Mechanics: with Application to Many-Electron Atoms and Molecules, D. A. Mazziotti, ed., Adv. Chem. Phys. 134, Wiley, Hoboken, NJ, 2007, pp. 93--101.
[4]
D. Chaykin, C. Jansson, F. Keil, M. Lange, K. T. Ohlhus, and S. M. Rump, Rigorous results in electronic structure calculations, Optimization online, 2016.
[5]
L. Chen, D. Sun, and K.-C. Toh, A note on the convergence of ADMM for linearly constrained convex optimization problems, Comput. Optim. Appl., 66 (2017), pp. 327--343.
[6]
F. H. Clarke, Optimization and Nonsmooth Analysis, vol. 5, SIAM, Philadelphia 1990.
[7]
A. J. Coleman, Structure of Fermion density matrices, Rev. Mod. Phys., 35 (1963), p. 668.
[8]
D. Davis and W. Yin, Convergence rate analysis of several splitting schemes http://arxiv.org/abs/1406.4834v3, preprint, http://arxiv.org/abs/1406.4834v3 [math.OC], 2015.
[9]
D. Davis and W. Yin, Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions http://arxiv.org/abs/1407.5210v3, preprint, arXiv:1407.5210v3 [math.OC], 2015.
[10]
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), pp. 201--213.
[11]
J. Douglas and H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables, Trans. Amer. Math. Soc., 82 (1956), pp. 421--439.
[12]
J. Eckstein and D. P. Bertsekas, On the Douglas--Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), pp. 293--318.
[13]
J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), pp. 293--318, https://doi.org/10.1007/BF01581204.
[14]
R. Erdahl, Representability, Int. J. Quantum Chem., 13 (1978), pp. 697--718.
[15]
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976), pp. 17--40.
[16]
C. Garrod and J. K. Percus, Reduction of the N-Particle Variational Problem, J. Math. Phys., 5 (1964), p. 1756, https://doi.org/10.1063/1.1704098.
[17]
G. Gidofalvi and D. A. Mazziotti, Spin and symmetry adaptation of the variational two-electron reduced-density-matrix method, Phys. Rev. A, 72 (2005), pp. 1--8, https://doi.org/10.1103/PhysRevA.72.052505.
[18]
P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), pp. 964--979, https://doi.org/10.1137/0716071.
[19]
Y. K. Liu, M. Christandl, and F. Verstraete, Quantum computational complexity of the N-representability problem: QMA complete, Phys. Rev. Lett., 98 (2007), pp. 1--4, https://doi.org/10.1103/PhysRevLett.98.110503.
[20]
J. E. Mayer, Electron correlation, Phys. Rev., 100 (1955), p. 1579.
[21]
D. A. Mazziotti, Variational reduced-density-matrix method using three-particle n-representability conditions with application to many-electron molecules, Phys. Rev. A, 74 (2006), p. 032501.
[22]
D. A. Mazziotti, Large-scale semidefinite programming for many-electron quantum mechanics, Phys. Rev. Lett., 106 (2011), pp. 7--10, https://doi.org/10.1103/PhysRevLett.106.083001.
[23]
M. Nakata, B. J. Braams, K. Fujisawa, M. Fukuda, J. K. Percus, M. Yamashita, and Z. Zhao, Variational calculation of second-order reduced density matrices by strong N-representability conditions and an accurate semidefinite programming solver, J. Chem. Phys., 128 (2008), https://doi.org/10.1063/1.2911696.
[24]
M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, and K. Fujisawa, Variational calculations of fermion second-order reduced density matrices be semidefinite programming algorithm, J. Chem. Phys., 114 (2001), pp. 8282--8292, https://doi.org/10.1063/1.1360199.
[25]
G. Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues, Math. Oper. Res., 23 (1998), pp. 339--358.
[26]
R. T. Rockafellar and R. J.-B. Wets, Variational analysis, Springer-Verlag, Berlin, 1998, https://doi.org/10.1007/978-3-642-02431-3.
[27]
D. Sun and J. Sun, Semismooth matrix-valued functions, Math. Oper. Res., 27 (2002), pp. 150--169, https://doi.org/10.1287/moor.27.1.150.342.
[28]
D. Sun, K.-C. Toh, and L. Yang, A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints, SIAM J. Optim., 25 (2015), pp. 882--915, https://doi.org/10.1137/140964357.
[29]
M. J. Todd, Semidefinite optimization, Acta Numer., 10 (2001), pp. 515--560.
[30]
L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49--95.
[31]
Z. Wen, D. Goldfarb, and W. Yin, Alternating direction augmented Lagrangian methods for semidefinite programming, Math. Program. Comput., 2 (2010), pp. 203--230, https://doi.org/10.1007/s12532-010-0017-1.
[32]
Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, H. Wolkowicz, R. Saigal, L. Vandenberghe, eds., Internat. Ser. Oper. Res. Management Sci., 27, Springer, New York, 2000.
[33]
X. Xiao, Y. Li, Z. Wen, and L. Zhang, A regularized semi-smooth Newton method with projection steps for composite convex programs, J. Sci. Comput., (2016), pp. 1--26.
[34]
L. Yang, D. Sun, and K. C. Toh, SDPNAL+: A majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints, Math. Program. Comput., 7 (2015), pp. 331--366, https://doi.org/10.1007/s12532-015-0082-6.
[35]
X.-y. Zhao, D. Sun, and K. C. Toh, A Newton-CG augmented Lagrangian method for semidefinite programming, SIAM J. Optim., 20 (2009), pp. 1737--1765.
[36]
Z. Zhao, B. J. Braams, M. Fukuda, M. L. Overton, and J. K. Percus, The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions., J. Chem. Phys., 120 (2004), pp. 2095--104, https://doi.org/10.1063/1.1636721.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 40, Issue 6
DOI:10.1137/sjoce3.40.6
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2018

Author Tags

  1. semidefinite programming
  2. ADMM
  3. semismooth Newton method
  4. electronic structure calculation
  5. two-body reduced density matrix

Author Tags

  1. 15A18
  2. 65F15
  3. 47J10
  4. 90C22

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media