skip to main content
10.5555/3174304.3175481acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

Covering small independent sets and separators with applications to parameterized algorithms

Published: 07 January 2018 Publication History

Abstract

We present two new combinatorial tools for the design of parameterized algorithms. The first is a simple linear time randomized algorithm that given as input a d-degenerate graph G and an integer k, outputs an independent set Y, such that for every independent set X in G of size at most k, the probability that X is a subset of Y is at least [EQUATION]. The second is a new (deterministic) polynomial time graph sparsification procedure that given a graph G, a set T = {{s1, t1}, {s2, t2},..., {s, t}} of terminal pairs and an integer k, returns an induced subgraph G* of G that maintains all the inclusion minimal multicuts of G of size at most k, and does not contain any (k + 2)-vertex connected set of size 2O(k). In particular, G* excludes a clique of size 2O(k) as a topological minor. Put together, our new tools yield new randomized fixed parameter tractable (FPT) algorithms for Stable s-t Separator, Stable Odd Cycle Transversal and Stable Multicut on general graphs, and for Stable Directed Feedback Vertex Set on d-degenerate graphs, resolving two problems left open by Marx et al. [ACM Transactions on Algorithms, 2013]. All of our algorithms can be derandomized at the cost of a small overhead in the running time.

References

[1]
B. Bollobás and A. Thomason, Proof of a conjecture of mader, erdös and hajnal on topological complete subgraphs, Eur. J. Comb., 19 (1998), pp. 883--887.
[2]
N. Bousquet, J. Daligault, and S. Thomassé, Multicut is fpt, in STOC, 2011, pp. 459--468.
[3]
J. Chen, Y. Liu, and S. Lu, An improved parameterized algorithm for the minimum node multiway cut problem, Algorithmica, 55 (2009), pp. 1--13.
[4]
J. Chen, Y. Liu, S. Lu, B. O'sullivan, and I. Razgon, A fixed-parameter algorithm for the directed feedback vertex set problem, Journal of the ACM (JACM), 55 (2008), p. 21.
[5]
R. H. Chitnis, M. Cygan, M. T. Hajiaghayi, and D. MARX, Directed subset feedback vertex set is fixed-parameter tractable, ACM Transactions on Algorithms, 11 (2015), p. 28.
[6]
R. H. Chitnis, M. Hajiaghayi, and D. Marx, Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset, SIAM J. Comput., 42 (2013), pp. 1674--1696.
[7]
H. Choi, K. Nakajima, and C. S. Rim, Graph bipartization and via minimization, SIAM J. Discrete Math., 2 (1989), pp. 38--47.
[8]
M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015.
[9]
M. Cygan, L. Kowalik, and M. Pilipczuk, Open problems from the update meeting on graph separation problems, 2013.
[10]
M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, Subset feedback vertex set is fixed-parameter tractable, SIAM J. Discrete Math., 27 (2013), pp. 290--309.
[11]
E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis, The complexity of multiterminal cuts, Siam Journal on Computing, 23 (1994), pp. 864--894.
[12]
E. D. Demaine, G. Gutin, D. Marx, and U. Stege, 07281 open problems - structure theory and FPT algorithmcs for graphs, digraphs and hypergraphs, in Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs, 08.07. - 13.07.2007, 2007.
[13]
R. Diestel, Graph Theory, Springer, Berlin, second ed., electronic ed., February 2000.
[14]
F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh, Efficient computation of representative families with applications in parameterized and exact algorithms, J. ACM, 63 (2016), pp. 29:1--29:60.
[15]
L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Canadian journal of Mathematics, 8 (1956), pp. 399--404.
[16]
M. L. Fredman, J. Komlós, and E. Szemerédi, Storing a sparse table with 0(1) 'worst case access time, J. ACM, 31 (1984), pp. 538--544.
[17]
M. Grohe, S. Kreutzer, and S. Siebertz, Characterisations of nowhere dense graphs (invited talk), in IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013, vol. 24 of LIPIcs, 2013, pp. 21--40.
[18]
K. ichi Kawarabayashi and B. A. Reed, An (almost) linear time algorithm for odd cycles transversal, in SODA, 2010, pp. 365--378.
[19]
Y. Iwata, K. Oka, AND Y. Yoshida, Linear-time FPT algorithms via network flow, in SODA, 2014, pp. 1749--1761.
[20]
R. M. Karp, Reducibility among combinatorial problems, in Complexity of computer computations, Springer, 1972, pp. 85--103.
[21]
J. Komlós and E. Szemerédi, Topological cliques in graphs II, Combinatorics, Probability & Computing, 5 (1996), pp. 79--90.
[22]
S. Kratsch, M. Pilipczuk, M. Pilipczuk, and M. Wahlström, Fixed-parameter tractability of multi-cut in directed acyclic graphs, SIAM J. Discrete Math., 29 (2015), pp. 122--144.
[23]
S. Kratsch and M. Wahlström, Representative sets and irrelevant vertices: New tools for kernelization, in 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20--23, 2012, IEEE Computer Society, 2012, pp. 450--459.
[24]
D. Lokshtanov and D. Marx, Clustering with local restrictions, Inf. Comput., 222 (2013), pp. 278--292.
[25]
D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and S. Saurabh, Faster parameterized algorithms using linear programming, ACM Trans. Algorithms, 11 (2014), pp. 15:1--15:31.
[26]
D. Lokshtanov, F. Panolan, S. Saurabh, R. Sharma, and M. Zehavi, Covering small independent sets and separators with applications to parameterized algorithms, arXiv preprint arXiv:1705.01414, (2017).
[27]
D. Lokshtanov and M. S. Ramanujan, Parameterized tractability of multiway cut with parity constraints, in Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9--13, 2012, Proceedings, Part I, 2012, pp. 750--761.
[28]
D. Lokshtanov, M. S. Ramanujan, and S. Saurabh, Linear time parameterized algorithms for subset feedback vertex set, in Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6--10, 2015, Proceedings, Part I, 2015, pp. 935--946.
[29]
D. Lokshtanov, M. S. Ramanujan, and S. Saurabh, A linear time parameterized algorithm for directed feedback vertex set, CoRR, abs/1609.04347 (2016).
[30]
D. Lokshtanov, M. S. Ramanujan, and S. Saurabh, A linear time parameterized algorithm for node unique label cover, CoRR, abs/1604.08764 (2016).
[31]
W. Mader, Existenzn-fach zusammenhängender teilgraphen in graphen genügend großer kantendichte, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 37 (1972), pp. 86--97.
[32]
D. Marx, Parameterized graph separation problems, Theor. Comput. Sci., 351 (2006), pp. 394--406.
[33]
D. Marx, B. O'sullivan, and I. Razgon, Finding small separators in linear time via treewidth reduction, ACM Transactions on Algorithms (TALG), 9 (2013), p. 30.
[34]
D. Marx and I. Razgon, Fixed-parameter tractability of multicut parameterized by the size of the cutset, SIAM J. Comput., 43 (2014), pp. 355--388.
[35]
D. W. Matula and L. L. Beck, Smallest-last ordering and clustering and graph coloring algorithms, Journal of the ACM (JACM), 30 (1983), pp. 417--427.
[36]
N. Misra, G. Philip, V. Raman, and S. Saurabh, On parameterized independent feedback vertex set, Theoretical Computer Science, 461 (2012), pp. 65--75.
[37]
J. Nešetřil and P. O. de Mendez, Grad and classes with bounded expansion i. decompositions, European Journal of Combinatorics, 29 (2008), pp. 760--776.
[38]
J. Nešetřil and P. O. de Mendez, On nowhere dense graphs, European Journal of Combinatorics, 32 (2011), pp. 600--617.
[39]
J. Nesetril and P. O. de Mendez, Sparsity - Graphs, Structures, and Algorithms, vol. 28 of Algorithms and combinatorics, Springer, 2012.
[40]
M. Ramanujan and S. Saurabh, Linear time parameterized algorithms via skew-symmetric multicuts, in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2014, pp. 1739--1748.
[41]
B. A. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals, Oper. Res. Lett., 32 (2004), pp. 299--301.
[42]
N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Comb. Theory, Ser. B, 63 (1995), pp. 65--110.
[43]
M. Stoer and F. Wagner, A simple min-cut algorithm, Journal of the ACM (JACM), 44 (1997), pp. 585--591.
[44]
B. Sudakov, Graph theory, Lecture Notes, (2016).
  1. Covering small independent sets and separators with applications to parameterized algorithms

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        SODA '18: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
        January 2018
        2859 pages
        ISBN:9781611975031
        • Program Chair:
        • Artur Czumaj

        Sponsors

        Publisher

        Society for Industrial and Applied Mathematics

        United States

        Publication History

        Published: 07 January 2018

        Check for updates

        Qualifiers

        • Research-article

        Conference

        SODA '18
        Sponsor:
        SODA '18: Symposium on Discrete Algorithms
        January 7 - 10, 2018
        Louisiana, New Orleans

        Acceptance Rates

        Overall Acceptance Rate 411 of 1,322 submissions, 31%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 43
          Total Downloads
        • Downloads (Last 12 months)2
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 06 Jan 2025

        Other Metrics

        Citations

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media