skip to main content
10.5555/2958031.2958102guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Generating Non-linear Interpolants by Semidefinite Programming

Published: 13 July 2013 Publication History

Abstract

Interpolation-based techniques have been widely and successfully applied in the verification of hardware and software, e.g., in bounded-model checking, CEGAR, SMT, etc., in which the hardest part is how to synthesize interpolants. Various work for discovering interpolants for propositional logic, quantifier-free fragments of first-order theories and their combinations have been proposed. However, little work focuses on discovering polynomial interpolants in the literature. In this paper, we provide an approach for constructing non-linear interpolants based on semidefinite programming, and show how to apply such results to the verification of programs by examples.

References

[1]
Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Logic of Programs, vol. 131. pp. 52---71 1981
[2]
Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: a proof assistant for higher-order logic. Springer, Heidelberg 2002
[3]
Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. ed. CADE 1992. LNCS, vol. 607, pp. 748---752. Springer, Heidelberg 1992
[4]
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977, pp. 238---252 1977
[5]
Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. ed. TACAS 1999. LNCS, vol. 1579, pp. 193---207. Springer, Heidelberg 1999
[6]
Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. eds. CAV 2000. LNCS, vol. 1855, pp. 154---169. Springer, Heidelberg 2000
[7]
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract DPLL procedure to DPLLT. J. ACM 536, 937---977
[8]
Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 12, 245---257 1979
[9]
Craig, W.: Linear reasoning: A new form of the Herbrand-Gentzen theorem. J. Symb. Log. 223, 250---268 1957
[10]
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 57, 394---397 1962
[11]
de Moura, L., BjØrner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. eds. TACAS 2008. LNCS, vol. 4963, pp. 337---340. Springer, Heidelberg 2008
[12]
McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. eds. CAV 2003. LNCS, vol. 2725, pp. 1---13. Springer, Heidelberg 2003
[13]
McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 3451, 101---121
[14]
Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. ed. CAV 1997. LNCS, vol. 1254, pp. 72---83. Springer, Heidelberg 1997
[15]
Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: POPL 2004, pp. 232---244 2004
[16]
McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. eds. CAV 2006. LNCS, vol. 4144, pp. 123---136. Springer, Heidelberg 2006
[17]
Jung, Y., Lee, W., Wang, B.-Y., Yi, K.: Predicate generation for learning-based quantifier-free loop invariant inference. In: Abdulla, P.A., Leino, K.R.M. eds. TACAS 2011. LNCS, vol. 6605, pp. 205---219. Springer, Heidelberg 2011
[18]
Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: Nieuwenhuis, R. ed. CADE 2005. LNCS LNAI, vol. 3632, pp. 353---368. Springer, Heidelberg 2005
[19]
Kapur, D., Majumdar, R., Zarba, C.: Interpolation for data structures. In: FSE 2006, pp. 105---116 2006
[20]
Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. J. Symb. Comput. 4511, 1212---1233 2010
[21]
Kupferschmid, S., Becker, B.: Craig interpolation in the presence of non-linear constraints. In: Fahrenberg, U., Tripakis, S. eds. FORMATS 2011. LNCS, vol. 6919, pp. 240---255. Springer, Heidelberg 2011
[22]
Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer 1998
[23]
Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, California Inst. of Tech. 2000
[24]
Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming 96, 293---320 2003
[25]
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 381, 49---95 1996
[26]
Chen, Y., Xia, B., Yang, L., Zhan, N.: Generating polynomial invariants with DISCOVERER and QEPCAD. In: Jones, C.B., Liu, Z., Woodcock, J. eds. Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 67---82. Springer, Heidelberg 2007
[27]
Dai, L., Xia, B., Zhan, N.: Generating non-linear interpolants by semidefinite programming. CoRR abs/1302.4739 2013
[28]
Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol. 149, pp. 157---270 2009
[29]
Greuel, G.M., Pfister, G., Schönemann, H.: Singular: a computer algebra system for polynomial computations. ACM Commun. Comput. Algebra 423, 180---181 2009
[30]
Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: SOSTOOLS: Sum of squares optimization toolbox for MATLAB 2004
[31]
Gulavani, B., Chakraborty, S., Nori, A., Rajamani, S.: Automatically refining abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. eds. TACAS 2008. LNCS, vol. 4963, pp. 443---458. Springer, Heidelberg 2008
[32]
Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Furbach, U., Shankar, N. eds. IJCAR 2006. LNCS LNAI, vol. 4130, pp. 235---250. Springer, Heidelberg 2006

Cited By

View all

Index Terms

  1. Generating Non-linear Interpolants by Semidefinite Programming

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    CAV 2013: Proceedings of the 25th International Conference on Computer Aided Verification - Volume 8044
    July 2013
    1012 pages
    ISBN:9783642397981

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 13 July 2013

    Author Tags

    1. Craig interpolant
    2. Positivstellensatz Theorem
    3. program verification
    4. semidefinite programming

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 06 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media