skip to main content
10.5555/2878947.2878956guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

The R2R framework: publishing and discovering mappings on the web

Published: 08 November 2010 Publication History

Abstract

The promise of the Web of Linked Data is to enable client applications to discover new data sources by following RDF links at run-time and to smoothly integrate data from these sources. Linked Data sources use different vocabularies to describe the same type of objects. It is also common practice to mix terms from different widely used vocabularies with proprietary terms. Thus Linked Data applications need to apply mappings to translate Web data to their local schema before doing any sophisticated data processing. Maintaining a local or central set of mappings that cover all Linked Data sources is likely to be impossible due to the size and dynamics of the Web of Linked Data. Thus this paper propagates a distributed, pay-as-you-go integration approach where data publishers, vocabulary maintainers and third parties may publish expressive mappings on the Web. A client application which discovers data that is represented using terms that are unknown to the application may search the Web for mappings and apply the discovered mappings to translate data to its local schema. We propose a language for publishing expressive, named mappings on the Web and a composition method for chaining partial mappings from different sources based on a mapping quality assessment heuristic. The composition method is implemented within the R2R Mapping Engine which can be used by Linked Data applications to translate Web data to their local schema.

References

[1]
Berners-Lee, T.: Design Issues: Linked Data. http://www.w3.org/DesignIssues/LinkedData.html (2006)
[2]
Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International Journal on Semantic Web & Information Systems, Vol. 5, Issue 3, pp 1-22 (2009)
[3]
Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: A new abstraction for information management. SIGMOD Record 34(4), pp. 27-33 (2005)
[4]
Hedeler, C., et al.: Dimensions of Dataspaces. In: Proceedings of the 26th British National Conference on Databases, pp. 55-66 (2009)
[5]
Madhavan, J., Shawn, J. R., Cohen, S., Dong, X., Ko, D., Yu, C., Halevy, A.: Web-scale Data Integration: You can only afford to Pay As You Go. Proceedings of the Conference on Innovative Data Systems Research (2007)
[6]
Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration systems. Proceedings of the Conference on Management of Data, SIGMOD (2008)
[7]
Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema -W3C Recommendation. http://www.w3.org/TR/rdf-schema/ (2004)
[8]
McGuinness, D., van Harmelen, F.: OWL Web Ontology Language - W3C Recommendation. http://www.w3.org/TR/owl-features/ (2004)
[9]
Miles, A., Bechhofer, S.: SKOS Simple Knowledge Organization System Reference -W3C Recommendation. http://www.w3.org/TR/2009/REC-skos-reference-20090818/ (2009)
[10]
Berrueta, D., Phipps, J.: Best Practice Recipes for Publishing RDF Vocabularies - W3C Working Group Note. http://www.w3.org/TR/swbp-vocab-pub/ (2008)
[11]
Shvaiko, P., Euzenat, J.: Ontology Matching. http://www.ontologymatching.org/ (2010)
[12]
Vaz Salles, M.A., Dittrich, J., Karakashian, S.K., Girard, O.R., Blunschi, L.: iTrails: Pay-as-you-go Information Integration in Dataspaces. In: Conference of Very large Data Bases (VLDB 2007), 663-674 (2007)
[13]
Mendelsohn, N.: The Self-Describing Web. W3C TAG Finding. http://www.w3.org/2001/tag/doc/selfDescribingDocuments.html (2009)
[14]
Prud'hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF - W3C Recommendation. http://www.w3.org/TR/rdf-sparql-query/ (2008)
[15]
Kifer, M.; Boley, H.: RIF Overview - W3C Working Group Note. http://www.w3.org//TR/2010/NOTE-rif-overview-20100622/ (2010)
[16]
Bizer, C., Schultz, A.: The R2R Data Translation Process. FUB Technical Report. http://www4.wiwiss.fu-berlin.de/bizer/r2r/tr/TR-R2R-DataTranlationProcess.pdf
[17]
Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal on Semantic Web & Information Systems, Vol. 5, Issue 2, pp 1-24 (2009)
[18]
Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets. Proceedings of the 2nd Workshop on Linked Data on the Web (2009)
[19]
Euzenat, J., Scharffe, F., Zimmermann A.: Expressive alignment language and implementation. Knowledge Web project report, KWEB/2004/D2.2.10/1.0 (2007)
[20]
Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
[21]
Rahm, E. and Bernstein, P.: A survey of approaches to automatic schema matching. The VLDB Journal 10, 4, pp. 334-350 (2001)
[22]
Haslhofer, B.: A Web-based Mapping Technique for Establishing Metadata Interoperability. PhD thesis, Universität Wien (2008)
[23]
Bizer, C., Cyganiak, R.: Quality-driven information filtering using the WIQA policy framework. Journal of Web Semantics: Science, Services and Agents on the World Wide Web, Volume 7, Issue 1, pp. 1-10 (2009)
[24]
Dong, X., Halevy, A. Y., and Yu, C.: Data integration with uncertainty. In: Conference of Very large Data Bases (VLDB 2007), 687-698 (2007)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
COLD'10: Proceedings of the First International Conference on Consuming Linked Data - Volume 665
November 2010
113 pages
  • Editors:
  • Olaf Hartig,
  • Andreas Harth,
  • Juan Sequeda

Publisher

CEUR-WS.org

Aachen, Germany

Publication History

Published: 08 November 2010

Author Tags

  1. dataspaces
  2. linked data
  3. pay-as-you-go data integration
  4. schema mapping
  5. self-descriptive data

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media