skip to main content
10.5555/2459296.2459306dlproceedingsArticle/Chapter ViewAbstractPublication Pagesaus-cscConference Proceedingsconference-collections
research-article
Free access

A dynamic archive based niching particle swarm optimizer using a small population size

Published: 17 January 2011 Publication History

Abstract

Many niching techniques have been proposed to solve multimodal optimization problems in the evolutionary computing community. However, these niching methods often depend on large population sizes to locate many more optima. This paper presents a particle swarm optimizer (PSO) niching algorithm only using a dynamic archive, without relying on a large population size to locate numerous optima. To do this, we record found optima in the dynamic archive, and allow particles in converged sub-swarms to be re-randomized to explore undiscovered parts of the search space during a run. This algorithm is compared with lbest PSOs with a ring topology (LPRT). Empirical results indicate that the proposed niching algorithm outperforms LPRT on several benchmark multimodal functions with large numbers of optima, when using a small population size.

References

[1]
Back, T., Fogel, D. B. & Michalewicz, Z., eds (1997), Handbook of Evolutionary Computation, IOP Publishing Ltd., Bristol, UK, UK.
[2]
Bird, S. & Li, X. (2006), Adaptively choosing niching parameters in a PSO, in M. Cattolico, ed., 'Genetic and Evolutionary Computation Conference, GECCO 2006, Proceedings, Seattle, Washington, USA, July 8--12, 2006', ACM, pp. 3--10.
[3]
Brits, R., Engelbrecht, A. & van den Bergh, F. (2007), 'Locating multiple optima using particle swarm optimization', Applied Mathematics and Computation 189(2), 1859--1883.
[4]
Clerc, M. & Kennedy, J. (2002), 'The particle swarm - explosion, stability, and convergence in a multidimensional complex space', IEEE Trans. on Evol. Comput. 6, 58--73.
[5]
Deb, K. (1989), Genetic Algorithms in multimodal function optimization (Master thesis and TCGA Report No. 89002), PhD thesis, Tuscaloosa: University of Alabama, The Clearinghouse for Genetic Algorithms.
[6]
Kennedy, J. & Eberhart, R. (1995), Particle swarm optimization, in 'Proc. Conf. IEEE Int Neural Networks', Vol. 4, pp. 1942--1948.
[7]
Li, J.-P., Balazs, M. E., Parks, G. T. & Clarkson, P. J. (2002), 'A species conserving genetic algorithm for multimodal function optimization', Evol. Comput. 10(3), 207--234.
[8]
Li, X. (2004), Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization, in K. Deb, ed., 'Proc. of Genetic and Evolutionary Computation Conference 2004(LNCS 3102)', pp. 105--116.
[9]
Li, X. (2010), 'Niching without niching parameters: Particle swarm optimization using a ring topology', Evolutionary Computation, IEEE Transactions on 14(1), 150--169.
[10]
Mahfoud, S. W. (1995), Niching methods for genetic algorithms, PhD thesis, Urbana, IL, USA.
[11]
Parsopoulos, K. & Vrahatis, M. (2001), Modification of the particle swarm optimizer for locating all the global minima, in R. N. M. K. V. Kurkova, N. Steele, ed., 'Artificial Neural Networks and Genetic Algorithms', Springer, pp. 324--327.
[12]
Price, K., Storn, R. M. & Lampinen, J. A. (2005), Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series), Springer-Verlag New York, Inc., Secaucus, NJ, USA.
[13]
R. Brits, A. E. & van den Bergh, F. (2002), A niching particle swarm optimizer, in 'Proc. of the 4th Asia-Pacific Conference on Simulated Evolution and Learning 2002(SEAL 2002)', pp. 692--696.
[14]
Schoeman, I. & Engelbrecht, A. (2005), 'A parallel vector-based particle swarm optimizer', pp. 268--271.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image DL Hosted proceedings
ACSC '11: Proceedings of the Thirty-Fourth Australasian Computer Science Conference - Volume 113
January 2011
180 pages
ISBN:9781920682934

Publisher

Australian Computer Society, Inc.

Australia

Publication History

Published: 17 January 2011

Author Tags

  1. a dynamic archive
  2. evolutionary computation
  3. multimodal optimization
  4. particle swarm optimization

Qualifiers

  • Research-article

Acceptance Rates

ACSC '11 Paper Acceptance Rate 18 of 53 submissions, 34%;
Overall Acceptance Rate 136 of 379 submissions, 36%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)32
  • Downloads (Last 6 weeks)3
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media