skip to main content
10.5555/2095116.2095146acmotherconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

Jaywalking your dog: computing the Fréchet distance with shortcuts

Published: 17 January 2012 Publication History

Abstract

The similarity of two polygonal curves can be measured using the Fréchet distance. We introduce the notion of a more robust Fréchet distance, where one is allowed to shortcut between vertices of one of the curves. This is a natural approach for handling noise, in particular batched outliers. We compute a constant factor approximation to the minimum Fréchet distance over all possible such shortcuts. Our algorithm runs in O(c2 kn log3 n) time if one is allowed to take at most k shortcuts and the input curves are c-packed. For the case where the number of shortcuts is unrestricted, we describe an algorithm which runs in O(c2 n log3 n) time. To facilitate the new algorithm we develop several new data-structures, which we believe to be of independent interest: (i) for range reporting on a curve, and (ii) for preprocessing a curve to answer queries for the Fréchet distance between a subcurve and a line segment.

References

[1]
{AERW03} H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. J. Algorithms, 49:262--283, 2003.
[2]
{AG95} H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Internat. J. Comput. Geom. Appl., 5:75--91, 1995.
[3]
{Alt09} H. Alt. The computational geometry of comparing shapes. In Efficient Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pages 235--248. Springer-Verlag, 2009.
[4]
{AY05} C. Aggarwal and S. Yu. An effective and efficient algorithm for high-dimensional outlier detection. Int. J. Very Large Data Bases, 14:211--221, April 2005.
[5]
{BBG08a} K. Buchin, M. Buchin, and J. Gudmundsson. Detecting single file movement. In Proc. 16th ACM SIGSPATIAL Int. Conf. Adv. GIS, pages 288--297, 2008.
[6]
{BBG+08b} K. Buchin, M. Buchin, J. Gudmundsson, Maarten L., and J. Luo. Detecting commuting patterns by clustering subtrajectories. In Proc. 19th Annu. Internat. Sympos. Algorithms Comput., pages 644--655, 2008.
[7]
{BBK+07} K. Buchin, M. Buchin, C. Knauer, G. Rote, and C. Wenk. How difficult is it to walk the dog? In Proc. 23rd Euro. Workshop on Comput. Geom., pages 170--173, 2007.
[8]
{BBW09} K. Buchin, M. Buchin, and Y. Wang. Exact algorithms for partial curve matching via the fréchet distance. In Proc. 20th ACM-SIAM Sympos. Discrete Algorithms, pages 645--654, 2009.
[9]
{BPSW05} S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle tracking data. In Proc. 31st VLDB Conference, pages 853--864, 2005.
[10]
{BS80} J. L. Bentley and J. B. Saxe. Decomposable searching problems i: Static-to-dynamic transformation. J. Algorithms, 1(4):301--358, 1980.
[11]
{CDG+11} D. Chen, A. Driemel, L. Guibas, A. Nguyen, and C. Wenk. Approximate map matching with respect to the Fréchet distance. In Proc. 13th Workshop Algorithm Eng. Exper., 2011.
[12]
{dB08} M. de Berg. Improved bounds on the union complexity of fat objects. Discrete Comput. Geom., 40(1):127--140, 2008.
[13]
{dBKSV02} M. de Berg, M. J. Katz, A. F. van der Stappen, and J. Vleugels. Realistic input models for geometric algorithms. Algorithmica, 34:81--97, 2002.
[14]
{DH11} A. Driemel and S. Har-Peled. Jaywalking your dog - computing the Fréchet distance with shortcuts. http://arxiv.org/abs/1107.1720, 2011.
[15]
{DHW10} A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for realistic curves in near linear time. In Proc. 26th Annu. ACM Sympos. Comput. Geom., pages 365--374, 2010. http://arxiv.org/abs/1003.0460.
[16]
{Efr05} A. Efrat. The complexity of the union of (α, β)-covered objects. SIAM J. Comput., 34(4):775--787, 2005.
[17]
{Eri96} J. Erickson. New lower bounds for Hopcroft's problem. Discrete Comput. Geom., 16:389--418, 1996.
[18]
{FJ84} G. N. Frederickson and D. B. Johnson. Generalized selection and ranking: sorted matrices. SIAM J. Comput., 13:14--30, 1984.
[19]
{Har10} S. Har-Peled. Geometric approximation algorithms. Class notes. Online at http://www.cs.uiuc.edu/~sariel/teach/notes/aprx/, 2010.
[20]
{HR11} S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended. In Proc. 27th Annu. ACM Sympos. Comput. Geom., pages 448--457, 2011. http://www.cs.uiuc.edu/~sariel/papers/10/frechet3d/.
[21]
{KKS05} M. S. Kim, S. W. Kim, and M. Shin. Optimization of subsequence matching under time warping in time-series databases. In Proc. ACM symp. Applied comput., pages 581--586, 2005.
[22]
{KP99} E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping to massive dataset. In Proc. of the Third Euro. Conf. Princip. Data Mining and Know. Disc., pages 1--11, 1999.
[23]
{MdB11} J. Gudmundsson M. de Berg, A. Cook IV. Fast fréchet queries. In Proc. 22nd Annu. Internat. Sympos. Algorithms Comput., 2011. to appear.
[24]
{MDBH06} A. Mascret, T. Devogele, I. Le Berre, and A. Hénaff. Coastline matching process based on the discrete Fréchet distance. In Proc. 12th Int. Sym. Spatial Data Handling, pages 383--400, 2006.
[25]
{MMY06} R. Maronna, D. Martin, and V. Yohai. Robust Statistics: Theory and Methods. Wiley, 2006.
[26]
{MSSZZ11} A. Maheshwari, J.-R. Sack, K. Shahbaz, and H. Zarrabi-Zadeh. Fréchet distance with speed limits. Computational Geometry, 44(2):110--120, 2011. Special issue of selected papers from the 21st Annual Canadian Conference on Computational Geometry.
[27]
{Ove83} M. H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lect. Notes in Comp. Sci. Springer-Verlag, Heidelberg, West Germany, 1983.
[28]
{SGHS08} J. Serrà, E. Gómez, P. Herrera, and X. Serra. Chroma binary similarity and local alignment applied to cover song identification. IEEE Transactions on Audio, Speech & Language Processing, 16(6):1138--1151, 2008.
[29]
{WSP06} C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching speed: Localizing global curve-matching algorithms. In Proc. 18th Int. Conf. Sci. Database Manag., pages 879--888, 2006.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
SODA '12: Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete algorithms
January 2012
1764 pages

Sponsors

  • Kyoto University: Kyoto University

In-Cooperation

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 17 January 2012

Check for updates

Qualifiers

  • Research-article

Conference

SODA '12
Sponsor:
  • Kyoto University

Acceptance Rates

Overall Acceptance Rate 411 of 1,322 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)1
Reflects downloads up to 28 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media