skip to main content
10.5555/2034161.2034208guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

MIME: a framework for interactive visual pattern mining

Published: 05 September 2011 Publication History

Abstract

We present a framework for interactive visual pattern mining. Our system enables the user to browse through the data and patterns easily and intuitively, using a toolbox consisting of interestingness measures, mining algorithms and post-processing algorithms to assist in identifying interesting patterns. By mining interactively, we enable the user to combine their subjective interestingness measure and background knowledge with a wide variety of objective measures to easily and quickly mine the most important and interesting patterns. Basically, we enable the user to become an essential part of the mining algorithm. Our demo currently applies to mining interesting itemsets and association rules, and its extension to episodes and decision trees is ongoing research.

References

[1]
Ankerst, M., Ester, M., Kriegel, H.-P.: Towards an effective cooperation of the user and the computer for classification. In: Proc. ACM SIGKDD, pp. 179-188 (2000).
[2]
Bertini, E., Lalanne, D.: Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery. SIGKDD Explor. Newsl. 11, 9-18 (2010).
[3]
Blockeel, H., Calders, T., Fromont, E., Goethals, B., Prado, A., Robardet, C.: An inductive database prototype based on virtual mining views. In: Proc. ACM SIGKDD, pp. 1061-1064 (2008).
[4]
Leung, C.K.-S., Carmichael, C.L.: FpVAT: a visual analytic tool for supporting frequent pattern mining. SIGKDD Explor. Newsl. 11, 39-48 (2010).
[5]
Techapichetvanich, K., Datta, A.: VisAR: a new technique for visualizing mined association rules. In: Li, X., Wang, S., Dong, Z. (eds.) Adv. Data Min. Appl., pp. 728-728. Springer, Berlin (2005).
[6]
Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM Comput. Surv. 38 (September 2006).
[7]
Goethals, B.: Frequent set mining. In: Data Mining and Knowledge Discovery Handbook, pp. 321-338 (2010).
[8]
Vreeken, J., Tatti, N., Goethals, B.: Useful patterns (UP'10) ACM SIGKDD workshop report. SIGKDD Explor. Newsl. 12, 56-58 (2011).
[9]
Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Vis. Comp. Graph. 8, 1-8 (2002).
[10]
Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Proc. ACM SIGKDD, pp. 32-41 (2002).

Cited By

View all
  1. MIME: a framework for interactive visual pattern mining

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    ECML PKDD'11: Proceedings of the 2011 European conference on Machine learning and knowledge discovery in databases - Volume Part III
    September 2011
    657 pages
    ISBN:9783642238079

    Sponsors

    • Pascal2 Network: Pascal2 Network
    • Xerox
    • Google Inc.
    • COST/MOVE: COST/MOVE
    • Yahoo! Labs

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 05 September 2011

    Author Tags

    1. MIME
    2. interactive visual mining
    3. pattern exploration

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 23 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media