skip to main content
10.5555/1775059.1775136guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Recursive blocked algorithms for solving periodic triangular Sylvester-type matrix equations

Published: 18 June 2006 Publication History

Abstract

Recently, recursive blocked algorithms for solving triangular one-sided and two-sided Sylvester-type equations were introduced by Jonsson and Kågström. This elegant yet simple technique enables an automatic variable blocking that has the potential of matching the memory hierarchies of today's HPC systems. The main parts of the computations are performed as level 3 general matrix multiply and add (GEMM) operations. We extend and apply the recursive blocking technique to solving periodic Sylvester-type matrix equations. Successive recursive splittings are performed on 3-dimensional arrays, where the third dimension represents the periodicity of a matrix equation.

References

[1]
Bartels, R.H., Stewart, G.W.: Solution of the equation AX + XB = C. Comm. Assoc. Comput. Mach. 15, 820-826 (1972).
[2]
Benner, P., Mehrmann, V., Xu, H.: Perturbation analysis for the eigenvalue problem of a formal product of matrices. BIT 42(1), 1-43 (2002).
[3]
Bittanti, S., Colaneri, P. (eds.): Periodic Control Systems. In: Proceedings volume from the IFAC Workshop, August 27-28, 2001, Elsevier Science & Technology, Cernobbio-Como, Italy (2001).
[4]
Bojanczyk, A.W., Golub, G., Van Dooren, P.: The Periodic Schur Decomposition. Algorithms and Applications. In: Luk, F.T. (ed.) Proceedings SPIE Conference, vol. 1770, pp. 31-42 (1992).
[5]
Elmroth, E., Gustavson, F., Jonsson, I., Kågström, B.: Recursive Blocked Algorithms and Hybrid Data Structures for Dense Matrix Library Software. SIAM Review 46(1), 3-45 (2004).
[6]
Fairweather, G., Gladwell, I.: Algorithms for Almost Block Diagonal Linear Systems. SIAM Review 44(1), 49-58 (2004).
[7]
Granat, R., Kågström, B.: Direct Eigenvalue Reordering in a Product of Matrices in Periodic Schur Form. SIAM J. Matrix Anal. Appl. 28(1), 285-300 (2006).
[8]
Granat, R., Kågström, B., Kressner, D.: Reordering the Eigenvalues of a Periodic Matrix Pair with Applications in Control. In: Proc. of 2006 IEEE Conference on Computer Aided Control Systems Design (CACSD), pp. 25-30 (2006) ISBN: 0- 7803-9797-5.
[9]
Granat, R., Kågström, B., Kressner, D.: Computing Periodic Deflating Subspaces Associated with a Specified Set of Eigenvalues. BIT Numerical Mathematics, December 2006 (submitted).
[10]
Hench, J.J., Laub, A.J.: Numerical solution of the discrete-time periodic Riccati equation. IEEE Trans. Automat. Control 39(6), 1197-1210 (1994).
[11]
Jonsson, I., Kågström, B.: Recursive blocked algorithms for solving triangular systems -- Part I: One-sided and coupled Sylvester-type matrix equations. ACM Trans. Math. Softw. 28(4), 392-415 (2002).
[12]
Jonsson, I., Kågström, B.: Recursive blocked algorithms for solving triangular systems -- Part II: Two-sided and generalized Sylvester and Lyapunov matrix equations. ACM Trans. Math. Softw. 28(4), 416-435 (2002).
[13]
Jonsson, I., Kågström, B.: RECSY -- A High Performance Library for Sylvester-Type Matrix Equations. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 810-819. Springer, Heidelberg (2003).
[14]
Kågström, B., Poromaa, P.: LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs. ACM Trans. Math. Software 22, 78-103 (1996).
[15]
Kågström, B.,Westin, L.: Generalized Schur methods with condition estimators for solving the generalized Sylvester equation. IEEE Trans. Automat. Control 34(4), 745-751 (1989).
[16]
Sreedhar, J., Van Dooren, P.: A Schur approach for solving some matrix equations. In: Helmke, U., Menniken, R., Saurer, J. (eds.) Systems and Networks: Mathematical Theory and Applications, Mathematical Research, vol. 77, pp. 339-362 (1994).
[17]
Sun, J.-G.: Perturbation bounds for subspaces associated with periodic eigenproblems. Taiwanese Journal of Mathematics 9(1), 17-38 (2005).
[18]
Varga, A.: Periodic Lyapunov equations: some applications and new algorithms. Internat. J. Control 67(1), 69-87 (1997).
[19]
Varga, A., Van Dooren, P.: Computational methods for periodic systems. In: Prepr. IFAC Workshop on Periodic Control Systems, Como, Italy, pp. 177-182 (2001).

Cited By

View all
  1. Recursive blocked algorithms for solving periodic triangular Sylvester-type matrix equations

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    PARA'06: Proceedings of the 8th international conference on Applied parallel computing: state of the art in scientific computing
    June 2006
    1191 pages
    ISBN:3540757546
    • Editors:
    • Bo Kågström,
    • Erik Elmroth,
    • Jack Dongarra,
    • Jerzy Waśniewski

    Sponsors

    • Umeå University
    • VR: The Swedish Research Council

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 18 June 2006

    Author Tags

    1. Sylvester-type matrix equations
    2. blocking
    3. level 3 BLAS
    4. periodic matrix equations
    5. recursion
    6. superscalar

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 06 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media