skip to main content
10.5555/1760230.1760248guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

New complexity results for some linear counting problems using minimal solutions to linear diophantine equations

Published: 16 July 2003 Publication History

Abstract

The linear reachability problem is to decide whether there is an execution path in a given finite state transition system such that the counts of labels on the path satisfy a given linear constraint. Using results on minimal solutions (in nonnegative integers) for linear Diophantine systems, we obtain new complexity results for the problem, as well as for other linear counting problems of finite state transition systems and timed automata. In contrast to previously known results, the complexity bounds obtained in this paper are polynomial in the size of the transition system in consideration, when the linear constraint is fixed.

References

[1]
R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183-235, April 1994. 165, 171
[2]
R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41(1):181-204, January 1994. 165
[3]
A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In TACAS'99, volume 1579 of LNCS, pages 193-207. Springer-Verlag, 1999. 163
[4]
I. Borosh, M. Flahive, and B. Treybig. Small solutions of linear diophantine equations. Discrete Mathematics, 58:215-220, 1986. 164, 167
[5]
I. Borosh and B. Treybig. Bounds on positive integral solutions of linear diophantine equations. Proceedings of the American Mathematical Society, 55:299-304, 1976. 164
[6]
A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of nonregular properties for nonregular processes. In LICS'95, pages 123-133. IEEE CS Press, 1995. 164
[7]
E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finitestate concurrent systems using temporal logic specifications. TOPLAS, 8(2):244- 263, 1986. 163
[8]
H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In CONCUR'99, volume 1664 of LNCS, pages 242-257. Springer, 1999. 165, 172
[9]
Zhe Dang. Binary reachability analysis of pushdown timed automata with dense clocks. In CAV'01, volume 2102 of LNCS, pages 506-517. Springer, 2001. 165, 172, 173
[10]
Zhe Dang, O. H. Ibarra, T. Bultan, R. A. Kemmerer, and J. Su. Binary reachability analysis of discrete pushdown timed automata. In CAV'00, volume 1855 of LNCS, pages 69-84. Springer, 2000. 165, 172, 173
[11]
Zhe Dang, O. H. Ibarra, and P. San Pietro. Liveness Verification of Reversal-bounded Multicounter Machines with a Free Counter. In FSTTCS'01, volume 2245 of LNCS, pages 132-143. Springer, 2001. 165, 170
[12]
Zhe Dang, P. San Pietro, and R. A. Kemmerer. On Presburger Liveness of Discrete Timed Automata. In STACS'01, volume 2010 of LNCS, pages 132-143. Springer, 2001. 165, 173
[13]
E. Domenjoud. Solving systems of linear diophantine equations: an algebraic approach. In MFCS'91, volume 520 of LNCS, pages 141-150. Springer-Verlag, 1991. 164
[14]
Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property specifications for finite-state verification. In ICSE'99, pages 411-421. ACM Press, 1999. 174
[15]
G. J. Holzmann. The model checker SPIN. TSE, 23(5):279-295, May 1997. 163
[16]
J. Hopcroft and J. Ullman. Introduction to Automata theory, Languages, and Computation. Addison-Wesley Publishing Company, 1979. 164
[17]
K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell Massachusetts, 1993. 163
[18]
Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541-580, 1989. 174
[19]
R. Parikh. On context-free languages. JACM, 13:570-581, 1966. 164, 168
[20]
A. Pnueli. The temporal logic of programs. In FOCS'77, pages 46-57. IEEE CS Press, 1977. 163
[21]
L. Pottier. Minimal solutions of linear diophantine equations: Bounds and algorithms. In Rewriting Techniques and Applications, volume 488 of LNCS, pages 162-173. Springer-Verlag, 1991. 164, 165, 167
[22]
M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification (preliminary report). In LICS'86, pages 332-344. IEEE CS Press, 1986. 163
  1. New complexity results for some linear counting problems using minimal solutions to linear diophantine equations

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      CIAA'03: Proceedings of the 8th international conference on Implementation and application of automata
      July 2003
      312 pages
      ISBN:3540405615
      • Editors:
      • Oscar H. Ibarra,
      • Zhe Dang

      Sponsors

      • Graduat Division, University of California, Santa Barbara
      • Computer Science Department, University of California, Santa Barbara
      • College of Engineering, University of California, Santa Barbara
      • Expertcity, Inc.
      • AT&T: AT&T Labs Research

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 16 July 2003

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 01 Jan 2025

      Other Metrics

      Citations

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media