skip to main content
10.5555/1760102.1760116guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Multiobjective meta level optimization of a load balancing evolutionary algorithm

Published: 08 April 2003 Publication History

Abstract

For any optimization algorithm tuning the parameters is necessary for effective and efficient optimization. We use a meta-level evolutionary algorithm for optimizing the effectiveness and efficiency of a load-balancing evolutionary algorithm. We show that the generated parameters perform statistically better than a standard set of parameters and analyze the importance of selecting a good region on the Pareto Front for this type of optimization.

References

[1]
Thomas Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, 1996.
[2]
David Caswell. Active processor scheduling using evolutionary algorithms. Master's thesis, Wright-Patterson Air Force Base, Ohio.
[3]
David J. Caswell and Gary B. Lamont. Wire-antenna geometry design with multiobjective genetic algorithms, 2001.
[4]
Y. Chan, S. Dandamudi, and S. Majumdar. Performance comparison of processor scheduling strategies in a distributed-memory multicomputer system. In Proc. Int. Parallel Processing Symp (IPPS), pages 139-145, 1997.
[5]
Hluch'y Dobrovodsk'y Dobruck'y. Static mapping methods for processor networks.
[6]
Paul C. Messina Geoffrey C. Fox, Roy D. Williams. Parallel Computing Works. Morgan Kaufmann Publishers, Inc., San Francisco, 1994.
[7]
G. Greenwood, A. Gupta, and K. McSweeney. Scheduling tasks in multiprocessor systems using evolutionary strategies, 1994.
[8]
Maciej Hapke, Andrzej Jaszkiewicz, and Krzysztof Kurowski. Multi-objective genetic local search methods for the flow shop problem. In Proceedings of the Evolutionary Multiobjective Optimizations Conference, 2002.
[9]
Tracy Braun Howard, Howard Jay Siegel, and Noah Beck. A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems, 2001.
[10]
Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs . Springer-Verlag, New York, 2nd edition, 1994.
[11]
Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics. Springer-Verlag, New York, 2000.
[12]
Jason Morrison. Co-evolution and genetic algorithms. Master's thesis, Carleton University, Ottawa, Ontario, 1998.
[13]
Jason Morrison and Franz Oppacher. A general model of co-evolution for genetic algorithms. In Int. Conf. on Artificial Neural Networks and Genetic Algorithms ICANNGA 99, ?, 1999.
[14]
Horst D. Simon. Partitioning of unstructured problems for parallel processing. Computing Systems in Engineering, 2:135-148, 1991.
[15]
G. Wang, T. Dexter, E. Goodman, and W. Punch. Optimization of a ga and within the ga for a 2-dimensional layout problem, 1996.
[16]
G. Wang, E. Goodman, and W. Punch. Simultaneous multi-level evolution, 1996.
[17]
Gang Wang, Erik D. Goodman, and William F. Punch. On the optimization of a class of blackbox optimization algorithms, 1997.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
EMO'03: Proceedings of the 2nd international conference on Evolutionary multi-criterion optimization
April 2003
811 pages
ISBN:3540018697
  • Editors:
  • Carlos M. Fonseca,
  • Peter J. Fleming,
  • Eckart Zitzler,
  • Lothar Thiele,
  • Kalyanmoy Deb

Sponsors

  • Fundação Luso-Americana para o Desenvolvimento
  • Fundação Calouste Gulbenkian
  • Fundação para a Ciência e a Tecnologia
  • Fundação Oriente
  • Universidade do Algarve

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 08 April 2003

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media