skip to main content
10.5555/1758684.1758709guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Topological analysis and characterization of discrete scalar fields

Published: 07 April 2002 Publication History

Abstract

In this paper, we address the problem of analyzing the topology of discrete scalar fields defined on triangulated domains. To this aim, we introduce the notions of discrete gradient vector field and of Smale-like decomposition for the domain of a d-dimensional scalar field. We use such notions to extract the most relevant features representing the topology of the field.We describe a decomposition algorithm, which is independent of the dimension of the scalar field, and, based on it, methods for extracting the critical net of a scalar field. A complete classification of the critical points of a 2-dimensional field that corresponds to a piecewise differentiable field is also presented.

References

[1]
M.K. Agoston. Algebraic Topology, A First Course, Pure and Applied Mathematics, Marcel Dekker, 1976.
[2]
C. L. Bajaj, V. Pascucci, and D. R. Shikore. Visualization of scalar topology for structural enhacement. In Proceedings of the IEEE Conference on Visualization' 98 1998, pages 51-58, 1998.
[3]
C. L. Bajaj and D. R. Shikore. Topology preserving data simplification with error bounds. Journal on Computers and Graphics, 22(1):3-12, 1998.
[4]
T. F. Banchoff. Critical Points and Curvature for Embedded Polyhedral Surfaces. Amer. Math. Monthly, 77(1):475-485, 1977.
[5]
S. Biasotti, B. Falcidieno, and M. Spagnuolo. Extended reeb graphs for surface understanding and description. In Proc. 9th DGCI'2000, Upsala, LNCS 1953, Springer-Verlag, pages 185-197, 2000.
[6]
L. DeFloriani, M. M. Mesmoudi, F. Morando, and Enrico Puppo. Nonmanifold decomposition in arbitrary dimension. In Proc. DGCI'2002, LNCS 2301, pages 96-80, 2002.
[7]
H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piecewise linear 2-manifolds. In Proc 17th Sympos. Comput. Geom., pages 70-79, 2001.
[8]
R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90- 145, 1998.
[9]
T. Gerstner and R. Pajarola. Topology preserving and controlled topology simplifying multiresolution isosurface extraction. In Proceedings IEEE Visualization 2000, pages 259-266. IEEE Computer Society, 2000.
[10]
J.C Hart. Morse theory for implicit surface modeling. In H.C. Hege and K. Poltihier (Eds), Mathematical Visualization, Springer-Verlag, pages 256-268, 1998.
[11]
J.C Hart. Using the CW-complex to represent topological structure of implicit surfaces and solids. In Proc. Implicit Surfaces 1999, Eurographics/SIGGRAPH, pages 107-112, 1999.
[12]
C Johnson, M. Burnett, and W. Dumbar. Crystallographic topology and its applications. In Crystallographic Computing 7: Macromolecular Crystallography data, P. E. Bourne, K. D. Watenpaugh, eds., IUCr Crystallographic Symposia, Oxford University Press, 2001.
[13]
J. Toriwaki and T. Fukumura. Extraction of structural information from grey pictures. Computer Graphics and Image Processing, 7:30-51, 1975.
[14]
F. Meyer. Topographic distance and watershed lines. Signal Processing, 38(1):113-125, 1994.
[15]
J. Milnor. Morse Theory. Princeton University Press, 1963.
[16]
L. R. Nackman. Two-dimensional critical point configuration graph. IEEE Transactions on Pattern Analysisand Machine Intelligence, PAMI-6(4):442-450, 1984.
[17]
T. K. Peucker and E. G. Douglas. Detection of surface-specific points by local pa-prallel processing of discrete terrain elevation data. Graphics Image Processing, 4:475-387, 1975.
[18]
S. Smale. Morse inequalities for a dynamical system. Bulletin of American Mathematical Society, 66:43-49, 1960.
[19]
R. Thom. Sur une partition en cellule associées a une fonction sur une variété. C.R.A.S., 228:973-975, 1949.
[20]
L. T. Watson, T. J. Laffey, and R.M. Haralick. Topographic classification of digital image intensity surfaces using generalised splines and the discrete cosine transformation. Computer Vision, Graphics and Image Processing, 29:143-167, 1985.
[21]
G.H. Weber, G Scheuermann, H. Hagen, and B. Hamann. Exploring scalar fields usign criticla isovalues. In Proceedings IEEE Visualization 2002, pages 171-178. IEEE Computer Society Press, 2002.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Proceedings of the 11th international conference on Theoretical foundations of computer vision
April 2002
437 pages
ISBN:3540009167
  • Editors:
  • Tetsuo Asano,
  • Reinhard Klette,
  • Chrisitan Ronse

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 07 April 2002

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media