skip to main content
article

Amaranth food dye photochemical and photoelectrochemical degradation: experiments and mathematical modelling

Published: 01 September 2008 Publication History

Abstract

This paper studied the photochemical and photoelectrochemical degradation of food dye (red dye - amaranth). The investigation aimed at the assessment of alternative treatments, focusing the use of clean technologies. The photochemical and photoelectrochemical degradation experiments were performed in a compartment with UV radiation (mercury lamp - 125W). For the photoelectrochemical degradation, the best mathematical modelling indicated by the LAB Fit software was the exponential model. This behavior indicates a first-order reaction. On the other side, the best mathematical model for the photochemical degradation was the linear one. Therefore, the photochemical degradation indicates a zero-order reaction. For the amaranth dye, the photoelectrochemical method showed itself to be more efficient than the photochemical one. The photoelectrochemical treatment pointed to a 92% color reduction in the dye solution, and Chemical Oxygen Demand (COD) removal reached up to 57%.

References

[1]
J. R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems, Pure and Applied Chemistry, Vol. 73, No. 4, 2001, pp. 627-637.
[2]
K. Patrik, G. Ernst, H. E. Siegfried, TiO2 photocatalytic oxidation of monochloroacetic acid and pyridine: influence of ozone, Journal of Photochemistry and Photobiology A: Chemistry Volume 136, Issue 3, 29 September 2000, Pages 163-168.
[3]
J. Perkowski, S. Ledakowicz, Decomposition of Antraquinone dye in the aqueous solution during advanced oxidation processes, Fibres & Textiles in Eastern Europe, Vol. 10, 2002, pp. 68-72.
[4]
G. Gualtieri, F. Calastrini, C. Busillo, G. Pirovano, The RAMS-CALMET-CALGRID modelling system to assess seasonal ozone pollution: a five-month application over Tuscany region, WSEAS Transactions on Environment and Development, Issue 11, Volume 3, November 2007, 196-205.
[5]
A. Psaroudaki, An extensive survey of the impact of tropospheric ozone on the biochemical properties of edible plants, WSEAS Transactions on Environment and Development, Issue 6, Volume 3, June 2007, 99-110.
[6]
R. Bertazzoli, R. Pelegrini, Photoelectrochemical discoloration and degradation of organic pollutants in aqueous solutions, Química Nova, Vol. 25, No 3., 2002, pp. 477-482.
[7]
M. Dilmeghani, K.O. Zahir, Kinetics and mechanism of chlorobenzene degradation in aqueous samples using advanced oxidation processes, Journal of Environmental Quality, Vol. 30, 2001, pp. 2062-2070.
[8]
F. V. F. Araújo, L. Yokoyama, Color removal in reactive dye solutions by UV/H2O2 Oxidation, Química Nova, Vol. 29, No. 1, 2006, pp. 11-14.
[9]
A. CK. Yip, F. LY. Lam, X. Hu, A novel heterogeneous acid-activated clay supported copper catalyst for the photobleaching and degradation of textile organic pollutant using photo-Fenton-like reaction, Chemical Communications, Vol. 25, 2005, pp. 3218-3220.
[10]
L.S. Andrade, E.A. Laurindo, R.V. Oliveira, R.C. Rocha-Filho, Q.B. Cass, Development of a HPLC method to follow the degradation of phenol by electrochemical or photoelectrochemical treatment, Journal of the Brazilian Chemical Society, Vol. 17, No. 2, 2006, pp. 369-373.
[11]
W.S. Pereira, R.S. Freire, Azo dye degradation by recycled waste zero-valent iron powder, Journal of the Brazilian Chemical Society, Vol. 17, No. 5, 2006, pp. 832-838.
[12]
E.C. Vidotti, M.C.E. Rollemberg, Derivative spectrophotometry: A simple strategy for simultaneous determination of food dyes, Química Nova, Vol. 29, No. 2, 2006, pp. 230-233.
[13]
A. Keck, J. Klein, M. Kudlich, A. Stolz, H-J. Knackmuss, R. Mattes, Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingonomas sp. Strain BN6, Applied and Environmental Microbiology, Vol. 63, No. 9, 1997, pp. 3684-3690.
[14]
J. Perkowski, L. Kos, Decolouration of model dyehouse wastewater with advanced oxidation processes, Fibres & Textiles in Eastern Europe, Vol. 11, No. 3, 2003, pp. 67-71.
[15]
http://www.abia.org.br/noticias.asp, accessed in May 2008.
[16]
Prado, M.; Abujamra, F.; Godoy, H. Análise de corantes em chás aromatizados. Revista Analytica, No. 5, 2003, pp. 31-35.
[17]
M.A. Prado, H.T. Godoy, Contents of synthetic in foods determined by high performance liquid chromatography, Química Nova, Vol. 30, No. 2, 2007, pp. 268-273.
[18]
F. A. R. Barros, P. C. Stringheta, Microencapsulamento de Antocianinas - Uma alternativa para o aumento da aplicabilidade como ingrediente alimentício. Biotecnologia Ciência e Desenvolvimento, No. 36, 2006, pp. 18-24.
[19]
P. B. L. Constant, P. C. Stringheta, D. Sandi, Corantes Alimentícios. Boletim do Centro de Processamento de Alimentos, Vol. 20, No. 2, 2002, pp. 203-220.
[20]
M.A. Prado, H.T. Godoy, Determination of synthetic dyes by high performance liquid chromatography (HPLC) in jelly powder, Química Nova, Vol. 27, No. 1, 2004, pp. 22-26.
[21]
Guaratini, C. C. I.; Zanoni, M. V. B. Textile dyes. Química Nova, Vol. 30, No. 1, 2000, pp. 71-78.
[22]
A. Kunz, P. Peralta-Zamora, S. G. Moraes, N. Durán, New tendencies on textile effluent treatment. Química Nova, Vol. 25, No. 1, 2002, pp. 78-82.
[23]
D. F. Angelis, C. R. Corso, E. D. Bidoia, P. B. Moraes, R. N. Domingos, R. C. Rocha-Filho, Electrolysis of polluting wastes. I - Wastewater from a seasoning freeze drying industry. Química Nova, Vol. 21, No. 1, 1998, pp. 20-24.
[24]
U. N. Ngoc, H. Schnitzer, Zero emissions systems in food processing industry, WSEAS Transactions on Environment and Development, Issue 4, Vol. 4, 2008, pp. 313-333.
[25]
M. Karkmaz, E. Puzenat, C. Guillard, J.M. Herrmann, Photocatalytic degradation of the alimentary azo dye amaranth mineralization of the azo group to nitrogen, Applied Catalysis B: Environmental, Vol. 51, 2004, pp. 183-194.
[26]
C-H. Wu, Comparison of azo dye degradation efficiency using UV/single semicondutor and UV/coupled semicondutor systems, Chemosphere, Vol. 57, 2004, pp. 601-608.
[27]
M. Abu Tariq, M. Faisal, M. Munner, Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and bismark brown in aqueous suspension, Journal of Hazardous Materials, Vol. 58, No. 1, 2005, pp. 172-179.
[28]
http://www.fda.gov/default.htm, accessed in September 2007.
[29]
Th. Fink, J.-P. Dath, R. Imbihl, and G. Ertl, Kinetic oscillations in the NO + CO reaction on Pt(lOO): Experiments and mathematical modeling, Journal of Chemical Physics, 95 (3), 1 August 1991, 2109-2126.
[30]
S. Simkins, M. Alexander, Models for Mineralization Kinetics with the Variables of Substrate Concentration and Population Density, Applied and Environmental Microbiology, June 1984, p. 1299-1306, Vol. 47, No. 6.
[31]
http://www.anvisa.gov.br, accessed in September 2007.
[32]
B. Wang, W. Kong, H. Ma, Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2- Sb2O5 anode, Journal of Hazardous Materials, Vol. 146, 2007, pp. 295-301.
[33]
G.R.P. Malpass, A.J. Motheo, Cyclic Voltammetric behaviour of Dimensionally Stable Anodes in the presence of C1-C3 Aldehydes, Journal of the Brazilian Chemical Society, Vol. 14, No. 4, 2003, pp. 645-650.
[34]
P.A. Carneiro, Fugivara, C.S., R.F.P. Nogueira, N. Boralle, M.V.B. Zanoni, A comparative study on chemical and electrochemical degradation of reactive blue 4 dye, Portugaliae Electrochimica Acta, Vol. 21, 2003, pp. 49-67.
[35]
C.P. Silva, S. Marmitt, C. Haetinger, S. Stülp, Assessment of red dye degradation through photochemical process, Engenharia Sanitária e Ambiental, Vol. 13, No. 1, 2008, pp. 73-77.
[36]
S. Stülp, C. P. Silva, S. Marmitt, The use of electrochemical techniques in the treatment of food industry effluents: a tool for the environmental management systems, Estudo & Debate, Vol. 12, No. 2, 2005, pp. 109-123.
[37]
http://www.labfit.net, accessed in September 2007.
[38]
P.R. Bevington, D.K. Robinson, Data reduction and error analysis for the physical sciences. Boston: WCB/McGraw-Hill, second edition, 328p, 1992.
[39]
W.P. da Silva, C.M.D.P.S. e Silva, C.G.B. Cavalcanti, D.D.P.S. e Silva, I.B. Soares, J.A.S. Oliveria, C.D.P.S. e Silva, LAB Fit ajuste de curva: um software em português para tratamento de dados experimentais (LAB Fit curve fitting: a software in portuguese for treatment of experimental data), Revista Brasileira de Ensino de Física 26(4) (2004), pp. 419-427, www.sbfisica.org.br
[40]
W. J. Arion, W. K. Canfield, E. S. Callaway, H.-J. Burger, H. Hemmerle, G. Schubert, A. W. Herling, R. Oekonomopulos, Direct Evidence for the Involvement of Two Glucose 6- Phosphate-binding Sites in the Glucose-6- phosphatase Activity of Intact Liver Microsomes, The Journal of Biological Chemistry Vol. 273, No. 11, 1998, pp. 6223-6227.
[41]
http://www.originlab.com, accessed in September 2007.
[42]
APHA. American Public Health Association. Standard Methods for the Examination of Water and Wastewater. 21st Ed., USA, Ed. American Public Health Association, 2005.
[43]
J. M. Cleaves, S L. Miller, Oceanic protection of prebiotic organic compounds from UV radiation, Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, 1998, pp. 7260-7263.
[44]
J. B. Souza, L. A. Daniel, Comparison between sodium hipoclorite and peracetic acid for E. coli, coliphagis and C. perfringes inactivation of high organic matter concentration water, Engenharia Sanitária e Ambiental, Vol. 10, No. 2, 2005, pp. 111-117.
[45]
P.W. Atkins, Physical Chemistry, Oxford, 3rd edn, 1988.
[46]
R.J. Silbey, R.A. Alberty, Physical Chemistry, New York, Third Edition, 2001.
[47]
E. Puzenat, H. Lachheb, M. Karkmaz, A. Houas, C. Guillard, J.M. Herrmann, Fate of nitrogen atoms in the photocatalytic degradation of industrial (congo red) and alimentary (amaranth) azo dyes. Evidence for mineralization into gaseous dinitrogen, International Journal of Photoenergy, Vol. 5, 2003, pp. 51-58.
[48]
N. Genç, Photocatalytic oxidation of a reactive azo dye and evaluation of the biodegradability of photocatalytically treated and untreated dye, Water SA, Vol. 30, No. 3, 2004, pp. 399-405.
[49]
S. GUL, O. Serinda, H. Boztepe, Effects of Ozonation on COD Elimination of Substituted Aromatic Compounds in Aqueous Solution, Turkish Journal of Chemistry, Vol. 23, 1999, pp. 21-26.
[50]
M.M. Tauber, G.M. Guebitz, A. Rehorek, Degradation of azo dyes by laccase and ultrasound treatment, Applied Environmental Microbiology, Vol. 71, No. 5, 2005, pp. 2600-2607.
[51]
J.-W. Wegener, H. Schulz, Characterization of leather candidate certified reference materials for their mass fractions of aromatic amines, Accreditation and Quality Assurance, Vol. 12, 2007, pp. 12-20.
[52]
P.P. Vijaya, S. Sandhya, Decolorization and Complete Degradation of Methyl Red by a Mixed Culture, The Environmentalist, Vol. 23, 2003, pp. 145-149.
[53]
S.-A. Ong, E. Toorisaka, M. Hirata, T. Hano, Treatment of methylene blue-containing wastewater using microorganisms supported on granular activated carbon under packed column operation Environmental Chemistry Letters, Vol. 5, 2007, pp. 95-99.
[54]
J. Kirschbaum, C. Krause, H. Brückner, Liquid chromatographic quantification of synthetic colorants in fish roe and caviar, European Food Research Technology, Vol. 22, 2005, pp. 572-579.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image WSEAS TRANSACTIONS on SYSTEMS
WSEAS TRANSACTIONS on SYSTEMS  Volume 7, Issue 9
September 2008
113 pages

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Stevens Point, Wisconsin, United States

Publication History

Published: 01 September 2008
Revised: 03 August 2008
Received: 14 February 2008

Author Tags

  1. UV radiation
  2. azo group
  3. food dye
  4. kinetics
  5. photoelectrochemical degradation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media