skip to main content
article

A columnar model explaining long-term memory

Published: 01 October 2012 Publication History

Abstract

A hologram provides a useful model for explaining the associative memory of the brain. Recent advances in neuroscience emphasize that single neurons can store complex information and that subtle changes in neurons underlie the process of memorization. Experimental results suggest that memory has a localized character. This finding is inconsistent with the characteristics of holographic memory, because this memory has a delocalized, uniform distribution of refractive index in the recorded medium. The recently proposed columnar memory model has a discrete distribution of refractive index. In this study, we first examined the performance of columnar memory and found that it was comparable to holographic memory. Secondly, we showed that this model could explain the above-mentioned experimental results as well as associative memory.

References

[1]
Kameyama, M., Lithography and ITRS, Technical Report 10-06, IIR Working Paper, Institute of Innovation Research Hitotsubashi University, 2010.
[2]
Bloom, F.E., Lazerson, A., and Hofstadter, L., Brain, Mind, and Behavior., New York: W.H. Freeman, 1985.
[3]
Azevedo, F.A., Carvalho, L.R., Grinberg, L.T., Farfel, J.M., Ferretti, R.E., Leite, R.E., Filho, W.J., Lent, R., and Herculano-Houzel, S., Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-Up Primate Brain, J. Comp. Neurol., 2009, vol. 513, pp. 532-541.
[4]
Shepherd, G.M., The Synaptic Organization of the Brain, 5th ed., New York: Oxford University Press, 2003.
[5]
Nunez, P.L. and Srinivasan, R., Electric Fields of the Brain: The Neurophysics of EEG, New York: Oxford University Press, 2005.
[6]
Moravec, H., When Will Computer Hardware Match the Human Brain?, J. Evolution Technol., 1998, vol. 1, pp. 1-10.
[7]
Hopfield, J.J., Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. Natl Acad. Sci., 1982, vol. 79, pp. 2554-2558.
[8]
Abbott, L.F. and Kepler, T.B., Model Neurons: From Hodgkin-Huxley to Hopfield, Lect. Notes Phys., 1990, vol. 368, pp. 5-18.
[9]
Pasemann, F., A Simple Chaotic Neuron, Physica, Ser. D, 1997, vol. 104, pp. 205-211.
[10]
Heil, P., Neubauer, H., Irvine, D.R.F., and Brown, M., Spontaneous Activity of Auditorynerve Fibers: Insights into Stochastic Processes at Ribbon Synapses, J. Neurosci., 1994, vol. 27, pp. 8457-8474.
[11]
Rolls, E.T. and Treves, A., Neural Networks and Brain Function, New York, Oxford: Oxford University Press, 1998.
[12]
Richter, J.D. and Klann, E., Making Synaptic Plasticity and Memory Last: Mechanisms of Translational Regulation, Genes Dev., 2009, vol. 23, pp. 1-11.
[13]
Mizutani, R., Takeuchi, A., Uesugi, K., Takekoshi, S., Osamura, R.Y., and Suzuki, Y., Microtomographic Analysis of Neuronal Circuits of Human Brain, Cereb. Cortex, 2010, vol. 20, pp. 1739-1748.
[14]
Sasaki, K.S., Tabuchi, Y., and Ohzawa, I., Complex Cells in the Cat Striate Cortex Have Multiple Disparity Detectors in the Three-Dimensional Binocular Receptive Fields, J. Neurosci., 2010, vol. 30, pp. 13826-13837.
[15]
Quiroga, R., Reddy, L., Kreiman, G., and Koch, C., Invariant Visual Representation by Single Neurons in the Human Brain, Nature, 2005, vol. 435, pp. 1102-1107.
[16]
Kubota, Y., Karube, F., Nomura, M., Gulledge, A.T., Mochizuki, A., Schertel, A., and Kawaguchi, Y., Conserved Properties of Dendritic Trees in Four Cortical Interneuron Subtypes, Sci. Rep., 2011, vol. 1, pp. 1-13.
[17]
Hoshino, T., Yatagai, T., and Itoh, M., Precise and Rapid Distance Measurements by Scatterometry, Opt. Express., 2012, vol. 20, pp. 3954-3966.
[18]
Fields, R.D., Making Memories Stick, Sci. Am., 2005, vol. 292, pp. 74-81.
[19]
Fusi, S. and Abbott, L.F., Limits on the Memory Storage Capacity of Bounded Synapses, Nat. Neurosci., 2007, vol. 10, pp. 485-493.
[20]
Thivierge, J.-P., Dandurand, F., and Cousineau, D., A Multi-State Model of Cortical Memory, in Proceedings of International Joint Conference on Neural Networks, IEEE, USA, California, San Jose, 2011, pp. 133-138.
[21]
Gazzaniga, M.S., The Cognitive Neurosciences, 2nd ed., Oxford, New York: W.W. Norton & Company, 2002.
[22]
Kuroyanagi, S. and Iwata, A., Auditory Pulse Neural Network Model to Extract the Interaural Time and Level Difference for Sound Localization, IEICE T. Inf. Syst., 1994, vol. E77-D, pp. 466-474.
[23]
Heil, P., Neubauer, H., Irvine, D.R.F., and Brown, M., Spontaneous Activity of Auditorynerve Fibers: Insights into Stochastic Processes at Ribbon Synapses, J. Neurosci., 1994, vol. 27, pp. 8457-8474.
[24]
Westlake, P.R., The Possibilities of Neural Holographic Processes within the Brain, Biol. Cybernetics, 1970, vol. 7, pp. 129-153.
[25]
Artur, B.D.E. and Anton, Z., The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, Oxford: Springer Publishing Company, 2000.
[26]
Tegmark, M., Importance of Quantum Decoherence in Brain Processes, Phys. Rev., Ser. E, 2000, vol. 61, pp. 4194-4206.
[27]
Koch, C. and Hepp, K., Quantum Mechanics in the brain, Nature, 2006, vol. 440, pp. 611-612.
[28]
Wansapura, J.P., Holland, S.K., Dunn, R.S., and Ball, W.S., NMR Relaxation Times in the Human Brain at 3.0 Tesla, J. Magn. Reson. Im., 1999, vol. 9, pp. 531-538.
[29]
Yin, J., Feix, J., and Hyde, J., Mapping of Collision Frequencies for Stearic Acid Spin Labels by Saturation-Recovery Electron Paramagnetic Resonance, Biophys. J., 1990, vol. 58, pp. 713-720.
[30]
Okazaki, M., Kuwata, K., Miki, Y., Shiga, S., and Shiga, T., Electron Spin Relaxation of Synthetic Melanin and Melanin-Containing Human Tissues As Studied By Electron Spin Echo and Electron Spin Resonance, Arch. Biochem. Biophys., 1985, vol. 242, pp. 197-205.
[31]
Leibold, C. and Kempter, R., Sparseness Constrains the Prolongation of Memory Lifetime Via Synaptic Metaplasticity, Cereb. Cortex, 2008, vol. 18, pp. 67-77.
[32]
Gabor, D., Holographic Model of Temporal recall, Nature, 1968, vol. 217, p. 584.
[33]
Gabor, D., Improved Holographic Model of Temporal Recall, Nature, 1968, vol. 217, pp. 1288-1289.
[34]
Gabor, D., Associative Holographic Memories, IBM J. Res. Dev., 1969, vol. 13, pp. 156-159.
[35]
Pribram, K.H., Introduction to Fourier Optics, N.J., Hillsdale: Lawrence Erlbaum Associates, 1991.
[36]
Lashley, K.S., Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain, New York: Hafner Pub. Co., 1964.
[37]
Hill, B., Some Aspects of a Large Capacity Holographic Memory, Appl. Opt., 1972, vol. 11, pp. 182-191.
[38]
Longuet-Higgins, H.C., Holographic Model of Temporal Recall, Nature, 1968, vol. 217, p. 104.
[39]
Psaltis, D., Brady, D., Gu, X.-G., and Lin, S., Holography in Artificial Neural Networks, Nature, 1990, vol. 343, pp. 325-330.
[40]
Ebersole, J., Optical Image Subtraction, Opt. Eng., 1975, vol. 14, pp. 436-447.
[41]
Goodman, J.W., Introduction to Fourier Optics, 3rd ed., Greenwood Village USA: Roberts and Company Publishers, 2005.
[42]
Gabor, D., Stroke, G.W., Restrick, R., Funkhouser, A., and Brumm, D., Optical Image Synthesis (Complex Amplitude Addition and Subtraction) by Holographic Fourier Transformation, Phys. Lett., 1965, vol. 18, pp. 116-118.
[43]
Lee, S.H., Yao, S.K., and Milnes, A.G., Optical Image Synthesis (Complex Amplitude Addition and Subtraction) in Real Time by a Diffraction-Grating Interferometric Method, J. Opt. Soc. Am., 1970, vol. 60, pp. 1037- 1041.
[44]
Zhang, H., Hubbard, P.L., Parker, G.J., and Alexander, D.C., Axon Diameter Mapping in the Presence of Orientation Dispersion with Diffusion MRI, NeuroImage, 2011, vol. 56, pp. 1301-1315.
[45]
Hoshino, T., Banerjee, S., Itoh, M., and Yatagai, T., Design of a Wavelength Independent Grating in the Resonance Domain, Appl. Opt., 2007, vol. 46, pp. 7948-7962.
[46]
Born, M. and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 5th ed., New York, Oxford: Pergamon Press, 1975.
[47]
E. Hecht, Optics, 4th ed., San Francisco: Addison-Wesley, 2002.
[48]
DiCarlo, J.J., Zoccolan, D., and Rust, N.C., How Does the Brain Solve Visual Object Recognition?, Neuron., 2012, vol. 73, pp. 415-434.
[49]
Gross, C.G., Genealogy of the Grandmother Cell, Neuroscientist, 2002, vol. 8, pp. 512-518.
[50]
Wriedt, T., A Review of Elastic Light Scattering Theories, Part. Part. Syst. Char., 1998, vol. 15, pp. 67-74.
[51]
Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.
[52]
Lalanne, P. and Silberstein, E., Fourier-Modal Methods Applied to Waveguide Computational Problems, Opt. Lett., 2000, vol. 25, pp. 1092-1094.
[53]
Hariharan, P., Basics of Holography, Cambridge: Cambridge University Press, 2002.
[54]
Tanaka, T. and Kawata, S., Comparison of Recording Densities in Three-Dimensional Optical Storage Systems: Multilayered Bit Recording Versus Angularly Multiplexed Holographic Recording, J. Opt. Soc. Am., Ser. A, 1996, vol. 13, pp. 935-942.
[55]
Gu, M. and Li, X., The Road to Bit-By-Bit Optical Data Storage, OPN Opt. Photon. News, 2010, vol. 21, pp. 29-33.
[56]
Hecht, E., Optics, 4th ed., San Francisco: Addison-Wesley, 2002.
[57]
Masters, B.R., Ernst Abbe and the Foundation of Scientific Microscopes, Opt. Photon. News, 2007, vol. 18, pp. 18-23.
[58]
Patterson, K., Nestor, P.J., and Rogers, T.T., Where Do You Know What You Know? The Representation of Semantic Knowledge in the Human Brain, Nature Rev. Neurosci., 2007, vol. 8, pp. 976-988.
[59]
Squire, L.R., Wixted, J.T., and Clark, R.E., Recognition Memory and the Medial Temporal Lobe: a New Perspective, Nature Rev. Neurosci., 2007, vol. 8, pp. 872-883.
[60]
Bird, C.M. and Burgess, N., The Hippocampus and Memory: Insights from Spatial Processing, Nature Rev. Neurosci., 2008, vol. 9, pp. 182-194.
[61]
Cabeza, R., Ciaramelli, E., Olson, I.R., and Moscovitch, M., The Parietal Cortex and Episodic Memory: an Attentional Account, Nature Rev. Neurosci., 2008, vol. 9, pp. 613-625.
[62]
Takeuchi, D., Hirabayashi, T., Tamura, K., and Miyashita, Y., Reversal of Interlaminar Signal between Sensory and Memory Processing in Monkey Temporal Cortex., Science, 2011, vol. 331, pp. 1443-1447.
[63]
Miyashita, Y., Cognitive Memory: Cellular and Network Machineries and Their Top-Down Control., Science, 2004, vol. 306, pp. 435-440.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Optical Memory and Neural Networks
Optical Memory and Neural Networks  Volume 21, Issue 4
October 2012
55 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 October 2012

Author Tags

  1. brain model
  2. columnar memory
  3. holographic memory
  4. long-term memory
  5. neuron

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media