skip to main content
research-article

Vizdom: interactive analytics through pen and touch

Published: 01 August 2015 Publication History

Abstract

Machine learning (ML) and advanced statistics are important tools for drawing insights from large datasets. However, these techniques often require human intervention to steer computation towards meaningful results. In this demo, we present Vizdom, a new system for interactive analytics through pen and touch. Vizdom's frontend allows users to visually compose complex workflows of ML and statistics operators on an interactive whiteboard, and the back-end leverages recent advances in workflow compilation techniques to run these computations at interactive speeds. Additionally, we are exploring approximation techniques for quickly visualizing partial results that incrementally refine over time. This demo will show Vizdom's capabilities by allowing users to interactively build complex analytics workflows using real-world datasets.

References

[1]
Apache Hadoop. http://hadoop.apache.org.
[2]
Apache Mahout. http://mahout.apache.org.
[3]
MIMIC II Dataset. http://mimic.physionet.org.
[4]
RapidMiner. http://rapidminer.com.
[5]
D. Antenucci, M. Cafarella, M. Levenstein, C. Ré, and M. D. Shapiro. Using Social Media to Measure Labor Market Flows. Technical report, 2014.
[6]
A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and S. B. Zdonik. Tupleware: "Big" Data, Big Analytics, Small Clusters. In CIDR, 2015.
[7]
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA Data Mining Software: An Update. SIGKDD Explorations, pages 10--18, 2009.
[8]
J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar. The MADlib Analytics Library or MAD Skills, the SQL. In VLDB, pages 1700--1711, 2012.
[9]
T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and M. I. Jordan. MLbase: A Distributed Machine-learning System. In CIDR, 2013.
[10]
Z. Liu and J. Heer. The Effects of Interactive Latency on Exploratory Visual Analysis. IEEE Trans. Vis. Comput. Graph., pages 2122--2131, 2014.
[11]
E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. E. Gonzalez, M. J. Franklin, M. I. Jordan, and T. Kraska. MLI: An API for Distributed Machine Learning. In ICDM, pages 1187--1192, 2013.
[12]
M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In NSDI, pages 15--28, 2012.
[13]
E. Zgraggen, R. C. Zeleznik, and S. M. Drucker. PanoramicData: Data Analysis through Pen & Touch. IEEE Trans. Vis. Comput. Graph., pages 2112--2121, 2014.
[14]
C. Zhang, A. Kumar, and C. Ré. Materialization Optimizations for Feature Selection Workloads. In SIGMOD, pages 265--276, 2014.

Cited By

View all
  1. Vizdom: interactive analytics through pen and touch

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 8, Issue 12
    Proceedings of the 41st International Conference on Very Large Data Bases, Kohala Coast, Hawaii
    August 2015
    728 pages
    ISSN:2150-8097
    Issue’s Table of Contents

    Publisher

    VLDB Endowment

    Publication History

    Published: 01 August 2015
    Published in PVLDB Volume 8, Issue 12

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)19
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 25 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media