skip to main content
article

DB2 with BLU acceleration: so much more than just a column store

Published: 01 August 2013 Publication History

Abstract

DB2 with BLU Acceleration deeply integrates innovative new techniques for defining and processing column-organized tables that speed read-mostly Business Intelligence queries by 10 to 50 times and improve compression by 3 to 10 times, compared to traditional row-organized tables, without the complexity of defining indexes or materialized views on those tables. But DB2 BLU is much more than just a column store. Exploiting frequency-based dictionary compression and main-memory query processing technology from the Blink project at IBM Research - Almaden, DB2 BLU performs most SQL operations - predicate application (even range predicates and IN-lists), joins, and grouping - on the compressed values, which can be packed bit-aligned so densely that multiple values fit in a register and can be processed simultaneously via SIMD (single-instruction, multipledata) instructions. Designed and built from the ground up to exploit modern multi-core processors, DB2 BLU's hardware-conscious algorithms are carefully engineered to maximize parallelism by using novel data structures that need little latching, and to minimize data-cache and instruction-cache misses. Though DB2 BLU is optimized for in-memory processing, database size is not limited by the size of main memory. Fine-grained synopses, late materialization, and a new probabilistic buffer pool protocol for scans minimize disk I/Os, while aggressive prefetching reduces I/O stalls. Full integration with DB2 ensures that DB2 with BLU Acceleration benefits from the full functionality and robust utilities of a mature product, while still enjoying order-of-magnitude performance gains from revolutionary technology without even having to change the SQL, and can mix column-organized and row-organized tables in the same tablespace and even within the same query.

References

[1]
D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden. Materialization strategies in a column-oriented DBMS. In ICDE, 2007.
[2]
A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving relations for cache performance. In VLDB, 2001.
[3]
M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel sort-merge joins in main memory multi-core database systems. PVLDB, 5(10), 2012.
[4]
R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle, S. Idreos, M.-S. Kim, O. Koeth, J.-G. Lee, T. T. Li, G. M. Lohman, K. Morfonios, R. Mueller, K. Murthy, I. Pandis, L. Qiao, V. Raman, R. Sidle, K. Stolze, and S. Szabo. Blink: Not your father's database! In BIRTE, 2011.
[5]
R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle, S. Idreos, M.-S. Kim, O. Koeth, J.-G. Lee, T. T. Li, G. M. Lohman, K. Morfonios, R. Mueller, K. Murthy, I. Pandis, L. Qiao, V. Raman, R. Sidle, K. Stolze, and S. Szabo. Business analytics in (a) blink. IEEE Data Eng. Bull., 2012.
[6]
R. Bestgen and T. McKinley. Taming the business-intelligence monster. IBM Systems Magazine, 2007.
[7]
P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall in MonetDB. Commun. ACM, 51, 2008.
[8]
G. P. Copeland and S. N. Khoshafian. A decomposition storage model. In SIGMOD, 1985.
[9]
D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A. Wood. Implementation techniques for main memory database systems. In SIGMOD, 1984.
[10]
F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees. The SAP HANA database - an architecture overview. IEEE Data Eng. Bull., 35(1), 2012.
[11]
L. M. Haas, W. Chang, G. M. Lohman, J. McPherson, P. F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. J. Carey, and E. Shekita. Starburst mid-flight: As the dust clears. IEEE TKDE, 2(1), 1990.
[12]
A. L. Holloway, V. Raman, G. Swart, and D. J. DeWitt. How to barter bits for chronons: compression and bandwidth trade offs for database scans. In SIGMOD, 2007.
[13]
IBM. DB2 with BLU acceleration. Available at http://www- 01.ibm.com/software/data/db2/linux-unix-windows/db2- blu-acceleration/.
[14]
R. Johnson, V. Raman, R. Sidle, and G. Swart. Row-wise parallel predicate evaluation. PVLDB, 1, 2008.
[15]
P.-A. Larson, C. Clinciu, C. Fraser, E. N. Hanson, M. Mokhtar, M. Nowakiewicz, V. Papadimos, S. L. Price, S. Rangarajan, R. Rusanu, and M. Saubhasik. Enhancements to SQL server column stores. In SIGMOD, 2013.
[16]
Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman. NUMA-aware algorithms: the case of data shuffling. In CIDR, 2013.
[17]
C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A transaction recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM TODS, 17(1), 1992.
[18]
V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani, D. Kossmann, I. Narang, and R. Sidle. Constant-time query processing. In ICDE, 2008.
[19]
P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection in a relational database management system. In SIGMOD, 1979.
[20]
K. Stolze, V. Raman, R. Sidle, and O. Draese. Bringing BLINK closer to the full power of SQL. In BTW, 2009.
[21]
M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. O'Neil, P. O'Neil, A. Rasin, N. Tran, and S. Zdonik. C-store: a column-oriented DBMS. In VLDB, 2005.
[22]
T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner. SIMD-scan: ultra fast in-memory table scan using on-chip vector processing units. PVLDB, 2, 2009.
[23]
M. Zukowski and P. A. Boncz. Vectorwise: Beyond column stores. IEEE Data Eng. Bull., 35(1), 2012.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 6, Issue 11
August 2013
237 pages

Publisher

VLDB Endowment

Publication History

Published: 01 August 2013
Published in PVLDB Volume 6, Issue 11

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)62
  • Downloads (Last 6 weeks)1
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media