skip to main content
research-article

Answering top-k queries over a mixture of attractive and repulsive dimensions

Published: 01 November 2011 Publication History

Abstract

In this paper, we formulate a top-k query that compares objects in a database to a user-provided query object on a novel scoring function. The proposed scoring function combines the idea of attractive and repulsive dimensions into a general framework to overcome the weakness of traditional distance or similarity measures. We study the properties of the proposed class of scoring functions and develop efficient and scalable index structures that index the isolines of the function. We demonstrate various scenarios where the query finds application. Empirical evaluation demonstrates a performance gain of one to two orders of magnitude on querying time over existing state-of-the-art top-k techniques. Further, a qualitative analysis is performed on a real dataset to highlight the potential of the proposed query in discovering hidden data characteristics.

References

[1]
J. Barnard, G. Downs, and P. Willett. Descriptor-Based Similarity Measures for Screening Chemical Databases, pages 59--80. John Wiley & Sons, 2000.
[2]
S. Berchtold, D. A. Keim, and H. peter Kriegel. The x-tree: An index structure for high-dimensional data. In Very Large Data Bases, pages 28--39, 1996.
[3]
Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R. Smith. The onion technique: indexing for linear optimization queries. In SIGMOD, pages 391--402, 2000.
[4]
G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering top-k queries using views. In VLDB, pages 451--462, 2006.
[5]
Daylight Chemical Information Systems Inc. Daylight Theory Manual.
[6]
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, 2000.
[7]
R. Fagin. Combining fuzzy information from multiple systems. In Symposium on Principles of Database Systems, pages 216--226, 1996.
[8]
R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In PODS, pages 102--113, 2001.
[9]
U. Güntzer, W.-T. Balke, and W. KieSSling. Optimizing multi-feature queries for image databases. In VLDB, pages 419--428, 2000.
[10]
V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: a system for the efficient execution of multi-parametric ranked queries. In SIGMOD, pages 259--270, 2001.
[11]
C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46(1--3):3--26, 2001.
[12]
S. Nepal and M. Ramakrishna. Query processing issues in image(multimedia) databases. In ICDE, pages 22--29, 1999.
[13]
S. Ranu and A. K. Singh. Mining statistically significant molecular substructures for efficient molecular classification. Journal of Chemical Information Modeling, 49:2537--2550, 2009.
[14]
S. Ranu and A. K. Singh. Novel method for pharmacophore analysis by examining the joint pharmacophore space. Journal of Chemical Information and Modeling, 51(5):1106--1121, 2011.
[15]
Y. Tao, D. Papadias, V. Hristidis, and Y. Papakonstantinou. Branch-and-bound processing of ranked queries. Information Systems, 32:424--445, 2007.
[16]
D. F. Veber, S. R. Johnson, H.-Y. Y. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12):2615--2623, 2002.
[17]
A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Norvag. Reverse top-k queries. In ICDE, pages 365--376, 2010.
[18]
D. Xin, C. Chen, and J. Han. Towards robust indexing for ranked queries. In VLDB, pages 235--246, 2006.
[19]
D. Xin, J. Han, and K. C. chuan Chang. Progressive and selective merge: computing top-k with ad-hoc ranking functions. In SIGMOD, pages 103--114, 2007.
[20]
L. Zou and L. Chen. Dominant graph: An efficient indexing structure to answer top-k queries. In ICDE, pages 536--545, 2008.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 5, Issue 3
November 2011
117 pages

Publisher

VLDB Endowment

Publication History

Published: 01 November 2011
Published in PVLDB Volume 5, Issue 3

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media