skip to main content
article

Decomposing Components of Task Preparation with Functional Magnetic Resonance Imaging

Published: 01 May 2004 Publication History

Abstract

It is widely acknowledged that the prefrontal cortex plays a major role in cognitive control processes. One important experimental paradigm for investigating such higher order cognitive control is the task-switching paradigm. This paradigm investigates the ability to switch flexibly between different task situations. In this context, it has been found that participants are able to anticipatorily prepare an upcoming task. This ability has been assumed to reflect endogenous cognitive control. However, it is difficult to isolate task preparation process from task execution using functional magnetic resonance imaging (fMRI). In the present study, we introduce a new experimental manipulation to investigate task preparation with fMRI. By manipulating the number of times a task was prepared, we could demonstrate that the left inferior frontal junction (IFJ) area (near the junction of inferior frontal sulcus and inferior precentral sulcus), the right inferior frontal gyrus, and the right intraparietal sulcus are involved in task preparation. By manipulating the cue-task mapping, we could further show that this activation is not related to cue encoding but to the updating of the relevant task representation. Based on these and previous results, we assume that the IFJ area constitutes a functionally separable division of the lateral prefrontal cortex. Finally, our data suggest that task preparation does not differ for switch and repetition trials in paradigms with a high proportion of switch trials, casting doubt on the assumption that an independent task set reconfiguration process takes place in the preparation interval.

References

[1]
Allport, A., Styles, E. A., & Hsieh S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance XV (pp. 421-452). Hillsdale, NJ: Erlbaum.
[2]
Brass, M., & von Cramon, D. Y. (2002). The role of the frontal cortex in task preparation. Cerebral Cortex, 12, 908-914.
[3]
Bunge, S. A., Hazeltine, E., Scanlon, M. D., Rosen, A. C., & Gabrieli, J. D. E. (2002). Dissociable contribution of prefrontal and parietal cortices to response selection. Neuroimage, 17, 1562-1571.
[4]
Bunge, S. A., Kahn, I., Wallis, J. D., Miller, E. K., & Wagner, A. D. (2003). Neural circuits subserving the retrieval and maintenance of abstract rules. Journal of Neurophysiology, 90, 3419-3428.
[5]
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201-215.
[6]
D'Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1-13.
[7]
Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., & von Cramon, D. Y. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study. Cognitive Brain Research, 9, 103-109.
[8]
Dreher, J. C., Koechlin, E., Ali, S. O., & Grafman, J. (2002). The roles of timing and task order during task switching. Neuroimage, 17, 95-109.
[9]
Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30, 257-303.
[10]
Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (2000). Visuomotor neurons: Ambiguity of the discharge or 'motor' perception? International Journal of Psychophysiology, 35, 165-177.
[11]
Friston, K., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189-210.
[12]
Fuster, J. (1980). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe. New York: Raven.
[13]
Garavan, H., Ross, T. J., Murphy, K., Roche, R. A. P., & Stein, E. A. (2002). Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. Neuroimage, 17, 1820-1829.
[14]
Goschke, T. (2000). Intentional reconfiguration and voluntary persistence in task set switching. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 331-355). Cambridge: MIT Press.
[15]
Henson, P. C., & Fletcher, R. N. (2002). Frontal lobes and human memory: Insights from neuroimaging. Brain, 124, 849-881.
[16]
Kanwisher, N., Woods, R. P., Iacoboni, M., & Mazziotta, J. C. (1997). A locus in human extrastriate cortex for visual shape analysis. Journal of Cognitive Neuroscience, 9, 133-142.
[17]
Kimberg, D. Y., Aguirre, G. K., & D'Esposito, M. (2000). Modulation of task-related neural activity in task-switching: An fMRI study. Cognitive Brain Research, 10, 189-196.
[18]
Koch, I. (2004). The role of external cues for endogenous advance reconfiguration in task switching. Psychonomic Bulletin and Review, 10(2), 488-492.
[19]
Konishi, S., Hayashi, T., Uchida, I., Kikyo, H., Takahashi, E., & Miyashita, Y. (2002). Hemispheric asymmetry in human lateral prefrontal cortex during cognitive set shifting. Proceedings of the National Academy of Sciences, U.S.A., 9, 7803-7808.
[20]
Logan, G. D., & Bundesen, C. (2003). Clever homunculus: Is there an endogenous act of control in explicit task cuing procedures? Journal of Experimental Psychology: Human, Perception and Performance, 29, 575-599.
[21]
Lohmann, G., Mueller, K., Bosch, V., Mentzel, H., Hessler, S., Chen, L., Zysset, S., & von Cramon, D. Y. (2001). Lipsia--A new software system for the evaluation of functional magnetic resonance images of the human brain. Computing Medical Imaging Graph, 25, 449-457.
[22]
Luks, T. L., Simpson, G. V., Feiwell, R. J., & Miller, W. J. (2002). Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set. Neuroimage, 17, 792-802.
[23]
MacDonald, A. W., III, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835-1838.
[24]
Mayr, U., & Kliegl, R. (2000). Task-set switching and long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1124-1140.
[25]
Mayr, U., & Kliegl, R. (2003). Differential effects of cue changes and task changes on task-set selection costs. Journal of Experimental Psychology: Learning, Memory, Cognition, 29, 362-372.
[26]
Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 1423-1442.
[27]
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.
[28]
Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90-100.
[29]
Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card Sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. Journal of Neuroscience, 21, 7733-7741.
[30]
Nagahama, Y., Okada, T., Katsumi, Y., Hayashi, T., Yamauchi, H., Oyanagi, C., Konishi, J., Fukuyama, H., & Shibasaki, H. (2001). Dissociable mechanisms of attentional control within the human prefrontal cortex. Cerebral Cortex, 11, 85-92.
[31]
Nakahara, K., Hayashi, T., Konishi, S., & Miyashita, Y. (2002). Functional MRI of macaque monkeys performing a cognitive set-shifting task. Science, 295, 1532-1536.
[32]
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113.
[33]
Petrides, M., & Pandya, D. N. (1999). Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. European Journal of Neuroscience, 11, 1011-1036.
[34]
Pollmann, S., Dove, A., von Cramon, D. Y., & Wiggins, C. J. (2000). Event-related fMRI: Comparison of conditions with varying BOLD overlap. Human Brain Mapping, 9, 26-37.
[35]
Rao, H., Zhou, T., Zhou, Y., Fan, S., & Chen, L. (2003). Spatiotemporal activation of the two visual pathways in form discrimination and spatial location: A brain mapping study. Human Brain Mapping, 18, 79-89.
[36]
Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207-231.
[37]
Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes. Journal of Experimental Psychology: Human Perception and Performance, 27, 763-797.
[38]
Ruge, H., Brass, M., Koch, I., Rubin, O., Meiran, N., & von Cramon, D. Y. (submitted). Reconciling advance preparation with proactive interference in task switching: Insights from BOLD fMRI.
[39]
Rushworth, M. F. S., Hadland, K. A., Paus, T., & Sipila, P. K. (2001). Role of the human medial frontal cortex in task switching. A combined fMRI and TMS study. Journal of Neuroscience, 87, 2577-2592.
[40]
Rushworth, M. F. S., & Owen A. M. (1998). The functional organization of the lateral frontal cortex: Conjecture or conjuncture in the electrophysiology literature? Trends in Cognitive Sciences, 2, 46-53.
[41]
Rushworth, M. F. S., Paus, T., & Sipila, P. K. (2001). Attention systems and the organization of the human parietal cortex. Journal of Neuroscience, 21, 5262-5271.
[42]
Schubotz, R. I., & von Cramon, D. Y. (2002). Dynamic patterns make the premotor cortex interested in objects: Influence stimulus and task revealed by fMRI. Cognitive Brain Research, 14, 357-369.
[43]
Schumacher, E. H., & D'Esposito, M. (2002). Neural implementation of response selection in humans as revealed by localized effects of stimulus-response compatibility on brain activation. Human Brain Mapping, 17, 193-201.
[44]
Sohn, M. H., Ursu, S., Anderson, J. R., Stenger, V. A., & Carter, C. S. (2000). The role of prefrontal cortex and posterior parietal cortex in task switching. Proceedings of the National Academy of Sciences, U.S.A., 97, 13448-13453.
[45]
Sudevan, P., & Taylor, D. A. (1987). The cueing and priming of cognitive operations. Journal of Experimental Psychology: Human Perception and Performance, 13, 89-103.
[46]
Talairach, P., & Tournoux, J. (1988). A stereotactic coplanar atlas of the human brain. Stuttgart: Thieme.
[47]
Tomita, H., Ohbayashi, M., Nakahara, k., Hasegawa, I., & Mijashita, Y. (1999). Top-down signals from prefrontal cortex in executive control of memory. Nature, 401, 699-703.
[48]
Toni, I., Rushworth, M. F. S., & Passingham, R. E. (2001). Neural correlates of visuomotor associations--Spatial rules compared with arbitrary rules. Experimental Brain Research, 141, 359-369.
[49]
Ullsperger, M., & von Cramon, D. Y. (2001). Subprocesses of performance monitoring: A dissociation of error processing and response competition revealed by event-related fMRI and ERPs. Neuroimage, 14, 1387-1401.
[50]
Wise, S. P., & Murray, E. A. (2000). Arbitrary associations between antecedents and actions. Trends Neuroscience, 23, 271-276.
[51]
Wallis, J. D, Anderson, K. C., & Miller, E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature, 411, 953-956.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Cognitive Neuroscience
Journal of Cognitive Neuroscience  Volume 16, Issue 4
May 2004
211 pages
ISSN:0898-929X
EISSN:1530-8898
Issue’s Table of Contents

Publisher

MIT Press

Cambridge, MA, United States

Publication History

Published: 01 May 2004

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media