skip to main content
10.1145/3605098.3636014acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
research-article
Open access

Temporal Logic Formalisation of ISO 34502 Critical Scenarios: Modular Construction with the RSS Safety Distance

Published: 21 May 2024 Publication History

Abstract

As the development of autonomous vehicles progresses, efficient safety assurance methods become increasingly necessary. Safety assurance methods such as monitoring and scenario-based testing call for formalisation of driving scenarios. In this paper, we develop a temporal-logic formalisation of an important class of critical scenarios in the ISO standard 34502. We use signal temporal logic (STL) as a logical formalism. Our formalisation has two main features: 1) modular composition of logical formulas for systematic and comprehensive formalisation (following the compositional methodology of ISO 34502); 2) use of the RSS distance for defining danger. We find our formalisation comes with few parameters to tune thanks to the RSS distance. We experimentally evaluated our formalisation; using its results, we discuss the validity of our formalisation and its stability with respect to the choice of some parameter values.

References

[1]
Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan. 2011. S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems. In TACAS 2011, Vol. 6605. Springer, 254--257.
[2]
C.Baier and J.-P. Katoen. 2008. Principles of Model Checking. The MIT Press.
[3]
P. Bender, J. Ziegler, and C. Stiller. 2014. Lanelets: Efficient map representation for autonomous driving. In IV 2014. 420--425.
[4]
L. Brim, P. Dluhoš, D. Šafránek, and T. Vejpustek. 2014. STL*: Extending signal temporal logic with signal-value freezing operator. Information and Computation 236 (2014), 52--67. Special Issue on Hybrid Systems and Biology.
[5]
A. Donzé. 2010. Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems. In CAV 2010, Vol. 6174. Springer, 167--170.
[6]
K. Esterle, L. Gressenbuch, and A. Knoll. 2020. Formalizing Traffic Rules for Machine Interpretability. In CAVS 2020. IEEE, 1--7.
[7]
G. E. Fainekos and G. J. Pappas. 2009. Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science 410, 42 (2009), 4262--4291.
[8]
E. C. for Europe Inland Transport Committee. 2019. Framework document on automated/autonomous vehicles. Technical Report ECE/TRANS/WP.29/2019/34/Rev.2. World Forum for Harmonization of Vehicle Regulations.
[9]
I. Hasuo. 2022. Responsibility-Sensitive Safety: an Introduction with an Eye to Logical Foundations and Formalization. CoRR abs/2206.03418 (2022). arXiv:2206.03418
[10]
I. Hasuo, C. Eberhart, J. Haydon, J. Dubut, R. Bohrer, T. Kobayashi, S. Pruekprasert, X.-Y. Zhang, E. A. Pallas, A. Yamada, K. Suenaga, F. Ishikawa, K. Kamijo, Y. Shinya, and T. Suetomi. 2023. Goal-Aware RSS for Complex Scenarios via Program Logic. IEEE Trans. Intell. Vehicles 8, 4 (2023), 3040--3072.
[11]
M. Hekmatnejad, S. Yaghoubi, A. Dokhanchi, H. B. Amor, A. Shrivastava, L. Karam, and G. Fainekos. 2019. Encoding and Monitoring Responsibility Sensitive Safety Rules for Automated Vehicles in Signal Temporal Logic. In MEMOCODE 2019 (La Jolla, California). ACM, New York, NY, USA, Article 6, 11 pages.
[12]
ISO 34502:2022(E) 2022. Road vehicles --- Test scenarios for automated driving systems --- Scenario based safety evaluation framework. Standard. International Organization for Standardization, Geneva, CH.
[13]
H. Königshof, F. Oboril, K. Scholl, and C. Stiller. 2022. A Parameter Analysis on RSS in Overtaking Situations on German Highways. In IV 2022. IEEE, 1081--1086.
[14]
R. Koymans. 1990. Specifying real-time properties with metric temporal logic. Real-Time Systems 2, 4 (Nov. 1990), 255--299.
[15]
R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. 2018. The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems. In ITSC 2018. 2118--2125.
[16]
H. Krasowski and M. Althoff. 2021. Temporal Logic Formalization of Marine Traffic Rules. In IV 2021. IEEE, 186--192.
[17]
S. Maierhofer, P. Moosbrugger, and M. Althoff. 2022. Formalization of Intersection Traffic Rules in Temporal Logic. In IV 2022. IEEE, 1135--1144.
[18]
S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff. 2020. Formalization of Interstate Traffic Rules in Temporal Logic. In IV 2020. IEEE, 752--759.
[19]
O. Maler and D. Nickovic. 2004. Monitoring Temporal Properties of Continuous Signals. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 152--166.
[20]
H. Muslim, S. Endo, H. Imanaga, S. Kitajima, N. Uchida, E. Kitahara, K. Ozawa, H. Sato, and H. Nakamura. 2023. Cut-Out Scenario Generation With Reasonability Foreseeable Parameter Range From Real Highway Dataset for Autonomous Vehicle Assessment. IEEE Access 11 (2023), 45349--45363.
[21]
D. Nalić, T. Mihalj, M. Baeumler, M. Lehmann, A. Eichberger, and S. Bernsteiner. 2020. Scenario Based Testing of Automated Driving Systems: A Literature Survey.
[22]
J.-P. Paardekooper, S. van Montfort, J. Manders, J. M. Goos, E. de Gelder, O. O. den Camp, O. Bracquemond, and G. Thiolon. 2019. Automatic Identification of Critical Scenarios in a Public Dataset of 6000 km of Public-Road Driving.
[23]
A. Pnueli. 1977. The temporal logic of programs. In SFCS 1977. 46--57.
[24]
D. Powers. 2008. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation. Mach. Learn. Technol. 2 (01 2008).
[25]
J. Reimann, N. Mansion, J. Haydon, B. Bray, A. Chattopadhyay, S. Sato, M. Waga, E. André, I. Hasuo, N. Ueda, and Y. Yokoyama. 2023. Temporal Logic Formalisation of ISO 34502 Critical Scenarios: Modular Construction with the RSS Safety Distance. (2023). Extended version with appendices, available on arXiv.
[26]
P. Schneider, M. Butz, C. Heinzemann, J. Oehlerking, and M. Woehrle. 2020. Scenario-based threat metric evaluation based on the highd dataset. In IV 2020. IEEE, 213--218.
[27]
A. D. S. Sectional Committee of AD Safety Evaluation. 2022. Automated Driving Safety Evaluation Framework Ver. 3.0 Guidelines for Safety Evaluation of Automated Driving Technology.
[28]
S. Shalev-Shwartz, S. Shammah, and A. Shashua. 2018. On a formal model of safe and scalable self-driving cars.
[29]
Q. Song, K. Tan, P. Runeson, and S. Persson. 2023. Critical scenario identification for realistic testing of autonomous driving systems. Software Quality Journal 31, 2 (June 2023), 441--469.
[30]
D. Ulus. 2018. Pattern Matching with Time : Theory and Applications. (Filtrage par motif temporisé : Théorie et Applications). Ph.D. Dissertation. Grenoble Alpes University, France. https://tel.archives-ouvertes.fr/tel-01901576
[31]
C. Wang and H. Winner. 2019. Overcoming Challenges of Validation Automated Driving and Identification of Critical Scenarios. In ITSC 2019. 2639--2644.
[32]
Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and I. Hasuo. 2018. Two-Layered Falsification of Hybrid Systems Guided by Monte Carlo Tree Search. IEEE Trans. on CAD 37, 11 (2018), 2894--2905.
[33]
Z. Zhang, I. Hasuo, and P. Arcaini. 2019. Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification. In CAV 2019, Vol. 11561. Springer, 401--420.
[34]
A. Zlocki, A. König, J. Bock, H. Weber, H. Muslim, H. Nakamura, S. Watanabe, J. Antona-Makoshi, and S. Taniguchi. 2022. Logical Scenarios Parameterization for Automated Vehicle Safety Assessment: Comparison of Deceleration and Cut-In Scenarios From Japanese and German Highways. IEEE Access 10 (2022), 26817--26829.

Cited By

View all

Index Terms

  1. Temporal Logic Formalisation of ISO 34502 Critical Scenarios: Modular Construction with the RSS Safety Distance

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        SAC '24: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing
        April 2024
        1898 pages
        ISBN:9798400702433
        DOI:10.1145/3605098
        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 21 May 2024

        Check for updates

        Author Tags

        1. automated driving
        2. temporal logic
        3. formal methods
        4. safety
        5. monitoring

        Qualifiers

        • Research-article

        Funding Sources

        Conference

        SAC '24
        Sponsor:

        Acceptance Rates

        Overall Acceptance Rate 1,650 of 6,669 submissions, 25%

        Upcoming Conference

        SAC '25
        The 40th ACM/SIGAPP Symposium on Applied Computing
        March 31 - April 4, 2025
        Catania , Italy

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)272
        • Downloads (Last 6 weeks)43
        Reflects downloads up to 01 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Login options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media