skip to main content
research-article

QiCells: A Modular RFSoC-based Approach to Interface Superconducting Quantum Bits

Published: 10 May 2023 Publication History

Abstract

Quantum computers will be a revolutionary extension of the heterogeneous computing world. They consist of many quantum bits (qubits) and require a careful design of the interface between the classical computer architecture and the quantum processor. For example, even single nanosecond variations of the interaction may have an influence on the quantum state. Designing a tailored interface electronics is therefore a major challenge, both in terms of signal integrity with respect to single channels, as well as the scaling of the signal count.
We developed such an interface electronics, an RFSoC-based qubit control system called QiController. In this article, we present the modular FPGA firmware design of our system. It features so-called digital unit cells, or QiCells. Each cell contains all the logic necessary to interact with a single superconducting qubit, including a custom-built RISC-V-based sequencer. Synchronization and data exchange between the cells is facilitated using a special star-point structure. Versatile routing and frequency-division multiplexing of generated signals between QiCells and converters are also supported. High-level programmability is provided using a custom Python-based description language and an associated compiler. We furthermore provide the resource utilization of our design and demonstrate its correct operation using an actual superconducting five-qubit chip.

References

[1]
Christian Kraglund Andersen, Ants Remm, Stefania Lazar, Sebastian Krinner, Johannes Heinsoo, Jean-Claude Besse, Mihai Gabureac, Andreas Wallraff, and Christopher Eichler. 2019. Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits. NPJ Quantum Information 5, 1 (2019), 1–7. DOI:
[2]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505–510. DOI:
[3]
R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras, R. Babbush, A. G. Fowler, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and John M. Martinis. 2016. Digitized adiabatic quantum computing with a superconducting circuit. Nature 534, 7606 (2016), 222–226. DOI:
[4]
Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. 2020. Quantum algorithms for quantum chemistry and quantum materials science. Chemical Reviews 120, 22 (2020), 12685–12717. DOI:
[5]
Cloud Native Computing Foundation. 2020. gRPC - A High-performance, Open Source Universal RPC Framework. Retrieved from 8 April 2020 https://grpc.io/.
[6]
Vedran Dunjko and Hans J Briegel. 2018. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Reports on Progress in Physics 81, 7 (2018), 074001. DOI:
[7]
R. P. Feynman. 1982. Simulating physics with computers. International Journal of Theoretical Physics 21 (1982), 467–488.
[8]
Richard Gebauer, Nick Karcher, Daria Gusenkova, Martin Spiecker, Lukas Grünhaupt, Ivan Takmakov, Patrick Winkel, Luca Planat, Nicolas Roch, Wolfgang Wernsdorfer, Alexey V. Ustinov, Marc Weber, Martin Weides, Ioan M. Pop, Oliver Sander, Aleksey Fedorov, and Alexey Rubtsov. 2020. State preparation of a fluxonium qubit with feedback from a custom FPGA-based platform. AIP Conference Proceedings 2241, 1 (2020), 020015. DOI:
[9]
Richard Gebauer, Nick Karcher, Jonas Hurst, Marc Weber, and Oliver Sander. 2021. Taskrunner: A flexible framework optimized for low latency quantum computing experiments. In Proceedings of the 2021 IEEE 34th International System-on-Chip Conference. IEEE, 123–128. DOI:
[10]
Edward Gerjuoy. 2005. Shor’s factoring algorithm and modern cryptography. An illustration of the capabilities inherent in quantum computers. American Journal of Physics 73, 6 (2005), 521–540. DOI:
[11]
IBM. 2021. IBM Quantum. Retrieved from 2 September 2022 https://quantum-computing.ibm.com/.
[12]
IBM. 2022. Qiskit - Open-Source Quantum Development. Retrieved from https://qiskit.org/.
[13]
N. Karcher, R. Gebauer, R. Bauknecht, R. Illichmann, and O. Sander. 2021. Versatile configuration and control framework for real time data acquisition systems. IEEE Transactions on Nuclear Science 68, 8 (2021), 1899–1906. DOI:
[14]
Keysight. 2019. Quantum Engineering Toolkit (QET) - Data Sheet. Retrieved from 20 September 2020 https://www.keysight.com/us/en/assets/7018-06423/data-sheets/5992-3503.pdf.
[15]
J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. 2007. Charge-insensitive qubit design derived from the Cooper pair box. Physical Review A 76, 4 (2007), 042319.
[16]
P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver. 2019. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews 6, 2 (2019), 021318. DOI:
[17]
M. Kristen, A. Schneider, A. Stehli, T. Wolz, S. Danilin, H. S. Ku, J. Long, X. Wu, R. Lake, D. P. Pappas, A. V. Ustinov, and M. Weides. 2020. Amplitude and frequency sensing of microwave fields with a superconducting transmon qudit. NPJ Quantum Information 6, 1 (2020), 57. DOI:
[18]
J. Majer, J. M. Chow, J. M. Gambetta, Jens Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. 2007. Coupling superconducting qubits via a cavity bus. Nature 449, 7161 (2007), 443–447. DOI:
[19]
David C. McKay, Stefan Filipp, Antonio Mezzacapo, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. 2016. Universal gate for fixed-frequency qubits via a tunable bus. Physical Review Applied 6, 6 (2016), 064007. DOI:
[20]
Nissim Ofek, Andrei Petrenko, Reinier Heeres, Philip Reinhold, Zaki Leghtas, Brian Vlastakis, Yehan Liu, Luigi Frunzio, S. M. Girvin, Liang Jiang, et al. 2016. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 7617 (2016), 441–445. https://www.nature.com/articles/nature18949
[21]
OpenCores 2010. Wishbone B4 - WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores. OpenCores. Retrieved from 2 August 2021 https://cdn.opencores.org/downloads/wbspec_b4.pdf.
[22]
Alejandro Perdomo-Ortiz, Neil Dickson, Marshall Drew-Brook, Geordie Rose, and Alán Aspuru-Guzik. 2012. Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 1 (2012), 571. DOI:
[23]
Alexander P. M. Place, Lila V. H. Rodgers, Pranav Mundada, Basil M. Smitham, Mattias Fitzpatrick, Zhaoqi Leng, Anjali Premkumar, Jacob Bryon, Andrei Vrajitoarea, Sara Sussman, Guangming Cheng, Trisha Madhavan, Harshvardhan K. Babla, Xuan Hoang Le, Youqi Gang, Berthold Jäck, András Gyenis, Nan Yao, Robert J. Cava, Nathalie P. de Leon, and Andrew A. Houck. 2021. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nature Communications 12, 1 (2021), 1779. DOI:
[24]
Qkitgroup. 2020. Qkit - A Quantum Measurement Suite in Python. Retrieved from 9 March 2020 https://github.com/qkitgroup/qkit.
[25]
Quantum Machines. 2019. The Quantum Orchestration Platform. Retrieved from 20 March 2020 https://www.quantum-machines.co/platform/.
[26]
D. Ristè, C. C. Bultink, K. W. Lehnert, and L. DiCarlo. 2012. Feedback control of a solid-state qubit using high-fidelity projective measurement. Physical Review Letters 109, 24 (2012), 240502. DOI:
[27]
D. Rosenberg, D. Kim, R. Das, D. Yost, S. Gustavsson, D. Hover, P. Krantz, A. Melville, L. Racz, G. O. Samach, S. J. Weber, F. Yan, J. L. Yoder, A. J. Kerman, and W. D. Oliver. 2017. 3D integrated superconducting qubits. NPJ Quantum Information 3, 1 (2017), 42. DOI:
[28]
B. Schumacher. 1995. Quantum coding. Physical Review A 51, 4 (1995), 2738–2747.
[29]
Aaron Somoroff, Quentin Ficheux, Raymond A. Mencia, Haonan Xiong, Roman V. Kuzmin, and Vladimir E. Manucharyan. 2021. Millisecond coherence in a superconducting qubit. arxiv:2103.08578 Retrieved from https://arxiv.org/abs/2103.08578.
[30]
Zurich Instruments. 2019. Quantum Computing Control System. Retrieved from 20 March 2020 https://www.zhinst.com/others/quantum-computing-control-system-qccs.

Cited By

View all
  • (2024)Mixerless RFSoC Microwave Signal Generation for Superconducting Circuit Applications2024 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE60285.2024.10407(565-566)Online publication date: 15-Sep-2024
  • (2024)The Quantum Interface Controller: A Full-Stack, Modular, and Scalable System for Qubit Readout and Manipulation2024 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE60285.2024.10358(466-467)Online publication date: 15-Sep-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems  Volume 16, Issue 2
June 2023
451 pages
ISSN:1936-7406
EISSN:1936-7414
DOI:10.1145/3587031
  • Editor:
  • Deming Chen
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 May 2023
Online AM: 26 December 2022
Accepted: 06 November 2022
Revised: 03 October 2022
Received: 04 May 2022
Published in TRETS Volume 16, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Data acquisition
  2. FPGA
  3. pulse generation
  4. quantum bits
  5. quantum-classical interface
  6. quantum computing
  7. RFSoC
  8. RISC-V

Qualifiers

  • Research-article

Funding Sources

  • German Federal Ministry of Education and Research
  • State Graduate Sponsorship Program (LGF)

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)230
  • Downloads (Last 6 weeks)15
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Mixerless RFSoC Microwave Signal Generation for Superconducting Circuit Applications2024 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE60285.2024.10407(565-566)Online publication date: 15-Sep-2024
  • (2024)The Quantum Interface Controller: A Full-Stack, Modular, and Scalable System for Qubit Readout and Manipulation2024 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE60285.2024.10358(466-467)Online publication date: 15-Sep-2024

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media