skip to main content
research-article
Open access

Step-Indexed Logical Relations for Countable Nondeterminism and Probabilistic Choice

Published: 11 January 2023 Publication History

Abstract

Developing denotational models for higher-order languages that combine probabilistic and nondeterministic choice is known to be very challenging. In this paper, we propose an alternative approach based on operational techniques. We study a higher-order language combining parametric polymorphism, recursive types, discrete probabilistic choice and countable nondeterminism. We define probabilistic generalizations of may- and must-termination as the optimal and pessimal probabilities of termination. Then we define step-indexed logical relations and show that they are sound and complete with respect to the induced contextual preorders. For may-equivalence we use step-indexing over the natural numbers whereas for must-equivalence we index over the countable ordinals. We then show than the probabilities of may- and must-termination coincide with the maximal and minimal probabilities of termination under all schedulers. Finally we derive the equational theory induced by contextual equivalence and show that it validates the distributive combination of the algebraic theories for probabilistic and nondeterministic choice.

References

[1]
Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Proceedings of the 15th European Conference on Programming Languages and Systems (ESOP’06). Springer-Verlag, Berlin, Heidelberg. 69–83. isbn:354033095X https://doi.org/10.1007/11693024_6
[2]
Andrew W. Appel and David McAllester. 2001. An indexed model of recursive types for foundational proof-carrying code. ACM Trans. Program. Lang. Syst., 23, 5 (2001), Sept., 657–683. issn:0164-0925, 1558-4593 https://doi.org/10.1145/504709.504712
[3]
K. R. Apt and G. D. Plotkin. 1986. Countable nondeterminism and random assignment. J. ACM, 33, 4 (1986), Aug., 724–767. issn:0004-5411, 1557-735X https://doi.org/10.1145/6490.6494
[4]
Robert J. Aumann. 1961. Borel structures for function spaces. Illinois J. Math., 5, 4 (1961), Dec., 614–630. issn:0019-2082 https://doi.org/10.1215/ijm/1255631584
[5]
Lars Birkedal, Aleš Bizjak, and Jan Schwinghammer. 2013. Step-Indexed Relational Reasoning for Countable Nondeterminism. Log. Meth. Comput. Sci., 9, 4 (2013), Oct., 4. issn:1860-5974 https://doi.org/10.2168/lmcs-9(4:4)2013
[6]
Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg. 2012. A Concurrent Logical Relation. In Computer Science Logic (CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France, Patrick Cégielski and Arnaud Durand (Eds.) (LIPIcs, Vol. 16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 107–121. https://doi.org/10.4230/LIPIcs.CSL.2012.107
[7]
Aleš Bizjak and Lars Birkedal. 2015. Step-Indexed Logical Relations for Probability. In Foundations of Software Science and Computation Structures, Andrew Pitts (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 279–294. isbn:978-3-662-46678-0
[8]
Filippo Bonchi, Alexandra Silva, and Ana Sokolova. 2017. The Power of Convex Algebras. In 28th International Conference on Concurrency Theory (CONCUR 2017), Roland Meyer and Uwe Nestmann (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 85). Schloss Dagstuhl– Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. 23:1–23:18. isbn:978-3-95977-048-4 issn:1868-8969 https://doi.org/10.4230/LIPIcs.CONCUR.2017.23
[9]
Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. 2019. The Theory of Traces for Systems with Nondeterminism and Probability. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (LICS ’19). IEEE, Article 19, 14 pages. https://doi.org/10.1109/lics.2019.8785673
[10]
Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation for universal probabilistic programming. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming. ACM, Nara, Japan. 33–46. isbn:978-1-4503-4219-3 https://doi.org/10.1145/2951913.2951942
[11]
Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. 2010. Model Checking Concurrent Programs with Nondeterminism and Randomization. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010), Kamal Lodaya and Meena Mahajan (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 8). Schloss Dagstuhl– Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. 364–375. isbn:978-3-939897-23-1 issn:1868-8969 https://doi.org/10.4230/LIPIcs.FSTTCS.2010.364
[12]
Patrick Cousot and Radhia Cousot. 1979. Constructive versions of Tarski’ s fixed point theorems. Pac. J. Math., 82, 1 (1979), May, 43–57. issn:0030-8730, 0030-8730 https://doi.org/10.2140/pjm.1979.82.43
[13]
Raphaëlle Crubillé and Ugo Dal Lago. 2017. Metric Reasoning About λ -Terms: The General Case. In Programming Languages and Systems: 26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings. Springer-Verlag, Berlin, Heidelberg. 341–367. isbn:978-3-662-54433-4 https://doi.org/10.1007/978-3-662-54434-1_13
[14]
Raphaëlle Crubillé and Ugo Dal Lago. 2015. Metric reasoning about λ -terms: The affine case. In 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science. 633–644. https://doi.org/10.1109/LICS.2015.64
[15]
Ryan Culpepper and Andrew Cobb. 2017. Contextual Equivalence for Probabilistic Programs with Continuous Random Variables and Scoring. In Programming Languages and Systems, Hongseok Yang (Ed.). 10201, Springer Berlin Heidelberg, Berlin, Heidelberg. 368–392. isbn:9783662544334, 9783662544341 issn:0302-9743, 1611-3349 https://doi.org/10.1007/978-3-662-54434-1_14
[16]
Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2018. Measurable cones and stable, measurable functions: A model for probabilistic higher-order programming. Proceedings of the ACM on Programming Languages, 2, POPL (2018), Article 59, Jan., 28 pages. issn:2475-1421 https://doi.org/10.1145/3158147
[17]
Thomas Ehrhard and Christine Tasson. 2019. Probabilistic call by push value. Log. Meth. Comput. Sci., Volume 15, Issue 1 (2019), Jan., https://doi.org/10.23638/LMCS-15(1:3)2019
[18]
Thomas Ehrhard, Christine Tasson, and Michele Pagani. 2014. Probabilistic coherence spaces are fully abstract for probabilistic PCF. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, New York, NY, USA. 309–320. isbn:9781450325448 https://doi.org/10.1145/2535838.2535865
[19]
Alexandre Goy and Daniela Petrişan. 2020. Combining probabilistic and non-deterministic choice via weak distributive laws. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, Saarbrücken Germany. 454–464. isbn:978-1-4503-7104-9 https://doi.org/10.1145/3373718.3394795
[20]
Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order probability theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 1–12. https://doi.org/10.1109/lics.2017.8005137
[21]
Bart Jacobs. 2021. From Multisets over Distributions to Distributions over Multisets. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, New York, NY, USA. Article 39, 13 pages. isbn:9781665448956 https://doi.org/10.1109/lics52264.2021.9470678
[22]
C. Jones and G.D. Plotkin. 1989. A probabilistic powerdomain of evaluations. In [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science. IEEE Comput. Soc. Press, 186–195. https://doi.org/10.1109/lics.1989.39173
[23]
Achim Jung and Regina Tix. 1998. The Troublesome Probabilistic Powerdomain. Electron. Notes Theor. Comput. Sci., 13 (1998), 70–91. issn:1571-0661 https://doi.org/10.1016/s1571-0661(05)80216-6
[24]
Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition Reasoning for Expected Run– Times of Probabilistic Programs. In Programming Languages and Systems, Peter Thiemann (Ed.). 9632, Springer Berlin Heidelberg, Berlin, Heidelberg. 364–389. isbn:9783662494974, 9783662494981 issn:0302-9743, 1611-3349 https://doi.org/10.1007/978-3-662-49498-1_15
[25]
Dexter Kozen. 1981. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22, 3 (1981), June, 328–350. issn:0022-0000 https://doi.org/10.1016/0022-0000(81)90036-2
[26]
Kenneth Kunen. 2011. Set Theory. College Publications. isbn:9781848900509
[27]
Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of probabilistic real-time systems. In International conference on computer aided verification. 585–591.
[28]
Søren Bøgh Lassen. 1998. Relational Reasoning about Functions and Nondeterminism. Ph. D. Dissertation. BRICS. https://www.brics.dk/DS/98/2/BRICS-DS-98-2.pdf
[29]
Matteo Mio, Ralph Sarkis, and Valeria Vignudelli. 2021. Combining Nondeterminism, Probability, and Termination: Equational and Metric Reasoning. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, New York, NY, USA. Article 18, 14 pages. isbn:9781665448956 https://doi.org/10.1109/lics52264.2021.9470717
[30]
Matteo Mio and Valeria Vignudelli. 2020. Monads and Quantitative Equational Theories for Nondeterminism and Probability. In 31st International Conference on Concurrency Theory (CONCUR 2020), Igor Konnov and Laura Kovács (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 171). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 28:1–28:18. isbn:978-3-95977-160-3 issn:1868-8969 https://doi.org/10.4230/LIPIcs.CONCUR.2020.28
[31]
Michael Mislove. 2000. Nondeterminism and Probabilistic Choice: Obeying the Laws. In CONCUR 2000 — Concurrency Theory, Catuscia Palamidessi (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 350–365. isbn:978-3-540-44618-7
[32]
Carroll Morgan and Annabelle McIver. 1999. pGCL: Formal reasoning for random algorithms.
[33]
Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference by program transformation in Hakaru (system description). In International Symposium on Functional and Logic Programming - 13th International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. 62–79. https://doi.org/10.1007/978-3-319-29604-3_5
[34]
Andrew Pitts. 2004. Typed Operational Reasoning. In Advanced Topics in Types and Programming Languages, Benjamin C. Pierce (Ed.). The MIT Press, Cambridge, Mass. isbn:978-0-262-16228-9 lccn:QA76.7 .A36 2005 https://doi.org/10.7551/mitpress/1104.003.0011
[35]
Andrew Pitts and Ian Stark. 1998. Operational Reasoning for Functions with Local State. In Higher Order Operational Techniques in Semantics, Andrew Gordon and Andrew Pitts (Eds.). Publications of the Newton Institute, Cambridge University Press, 227–273. http://www.inf.ed.ac.uk/~stark/operfl.html
[36]
G. D. Plotkin. 1976. A Powerdomain Construction. SIAM J. Comput., 5, 3 (1976), Sept., 452–487. issn:0097-5397, 1095-7111 https://doi.org/10.1137/0205035
[37]
N. Saheb-Djahromi. 1980. Cpo’s of measures for nondeterminism. Theor. Comput. Sci., 12, 1 (1980), Sept., 19–37. issn:0304-3975 https://doi.org/10.1016/0304-3975(80)90003-1
[38]
Roberto Segala. 2006. Probability and Nondeterminism in Operational Models of Concurrency. In CONCUR 2006 – Concurrency Theory, Christel Baier and Holger Hermanns (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 64–78. isbn:978-3-540-37377-3
[39]
W. W. Tait. 1967. Intensional interpretations of functionals of finite type I. J. Symbolic Logic, 32, 2 (1967), Aug., 198–212. issn:0022-4812, 1943-5886 https://doi.org/10.2307/2271658
[40]
Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math., 5, 2 (1955), June, 285–309. issn:0030-8730, 0030-8730 https://doi.org/10.2140/pjm.1955.5.285
[41]
Joseph Tassarotti and Robert Harper. 2019. A separation logic for concurrent randomized programs. Proceedings of the ACM on Programming Languages, 3, POPL (2019), Article 64, Jan., 30 pages. issn:2475-1421 https://doi.org/10.1145/3290377
[42]
Aaron J. Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. 2013. Logical relations for fine-grained concurrency. Acm Sigplan Notices, 48, 1 (2013), Jan., 343–356. issn:0362-1340, 1558-1160 https://doi.org/10.1145/2480359.2429111
[43]
Matthijs Vákár, Ohad Kammar, and Sam Staton. 2019. A domain theory for statistical probabilistic programming. Proceedings of the ACM on Programming Languages, 3, POPL (2019), Jan., 1–29. issn:2475-1421 https://doi.org/10.1145/3290349
[44]
Daniele Varacca and Glynn Winskel. 2006. Distributing probability over non-determinism. Math. Struct. Comp. Sci., 16, 01 (2006), Feb., 87. issn:0960-1295, 1469-8072 https://doi.org/10.1017/s0960129505005074
[45]
Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual equivalence for a probabilistic language with continuous random variables and recursion. Proceedings of the ACM on Programming Languages, 2, ICFP (2018), Article 87, July, 30 pages. issn:2475-1421 https://doi.org/10.1145/3236782
[46]
Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. 2014. A New Approach to Probabilistic Programming Inference. In Proceedings of the 17th International conference on Artificial Intelligence and Statistics. 1024–1032.
[47]
Wang Yi and Kim Guldstrand Larsen. 1992. Testing Probabilistic and Nondeterministic Processes. In Proceedings of the IFIP TC6/WG6.1 Twelth International Symposium on Protocol Specification, Testing and Verification XII. North– Holland Publishing Co., 15 pages. isbn:0444898743
[48]
Yizhou Zhang and Nada Amin. 2022. Reasoning about “Reasoning about Reasoning”: Semantics and Contextual Equivalence for Probabilistic Programs with Nested Queries and Recursion. Proc. ACM Program. Lang., 6, POPL (2022), Article 16, jan, 28 pages. https://doi.org/10.1145/3498677

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages  Volume 7, Issue POPL
January 2023
2196 pages
EISSN:2475-1421
DOI:10.1145/3554308
  • Editor:
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 January 2023
Published in PACMPL Volume 7, Issue POPL

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Functional Languages
  2. Logical Relations
  3. Probabilistic programming

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)176
  • Downloads (Last 6 weeks)21
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media