skip to main content
10.1145/3479394.3479405acmotherconferencesArticle/Chapter ViewAbstractPublication PagesppdpConference Proceedingsconference-collections
research-article

A Superposition-Based Calculus for Diagrammatic Reasoning

Published: 07 October 2021 Publication History

Abstract

We introduce a class of rooted graphs which are expressive enough to encode various kinds of classical or quantum circuits. We then follow a set-theoretic approach to define rewrite systems over the considered graphs. Afterwards, we tackle the problem of equational reasoning with the graphs under study and we propose a new Superposition calculus to check the unsatisfiability of formulas consisting of equations or disequations over these graphs. We establish the soundness and refutational completeness of the calculus.

References

[1]
L. Bachmair and H. Ganzinger. 1994. Rewrite-based Equational Theorem Proving with Selection and Simplification. Journal of Logic and Computation 3, 4 (1994), 217–247.
[2]
Miriam Backens and Aleks Kissinger. 2018. ZH: A complete graphical calculus for quantum computations involving classical non-linearity. In 15th Annual Conference of Quantum Physics and Logic (QPL). arXiv:1805.02175.
[3]
Hendrik Pieter Barendregt. 1990. Functional Programming and Lambda Calculus. In Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, Jan van Leeuwen (Ed.). Elsevier and MIT Press, 321–363. https://doi.org/10.1016/b978-0-444-88074-1.50012-3
[4]
Hendrik Pieter Barendregt, Marko C. J. D. van Eekelen, John R. W. Glauert, Richard Kennaway, Marinus J. Plasmeijer, and M. Ronan Sleep. 1987. Term Graph Rewriting. In PARLE, Parallel Architectures and Languages Europe, Volume II: Parallel Languages(LNCS, Vol. 259). Springer, 141–158. https://doi.org/10.1007/3-540-17945-3_8
[5]
Peter Baumgartner and Uwe Waldmann. 2013. Hierarchic Superposition with Weak Abstraction. In Automated Deduction - CADE-24 - 24th International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings(Lecture Notes in Computer Science, Vol. 7898), Maria Paola Bonacina (Ed.). Springer, 39–57. https://doi.org/10.1007/978-3-642-38574-2_3
[6]
Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, and Uwe Waldmann. 2021. Superposition for Lambda-Free Higher-Order Logic. Log. Methods Comput. Sci. 17, 2 (2021). https://lmcs.episciences.org/7349
[7]
Jasmin Christian Blanchette, Nicolas Peltier, and Simon Robillard. 2018. Superposition with Datatypes and Codatatypes. In Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings(Lecture Notes in Computer Science, Vol. 10900), Didier Galmiche, Stephan Schulz, and Roberto Sebastiani (Eds.). Springer, 370–387. https://doi.org/10.1007/978-3-319-94205-6_25
[8]
Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. 2017. Confluence of graph rewriting with interfaces. In 26th European Symposium on Programming (21/04/17 - 28/04/17). https://eprints.soton.ac.uk/406231/
[9]
Jon Haël Brenas, Rachid Echahed, and Martin Strecker. 2016. Proving Correctness of Logically Decorated Graph Rewriting Systems. In 1st International Conference on Formal Structures for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal(LIPIcs, Vol. 52). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 14:1–14:15. https://doi.org/10.4230/LIPIcs.FSCD.2016.14
[10]
Titouan Carette, Dominic Horsman, and Simon Perdrix. 2019. SZX-calculus: Scalable graphical quantum reasoning. arXiv preprint arXiv:1905.00041(2019).
[11]
Alexandre Clément and Simon Perdrix. 2020. PBS-calculus: A Graphical Language for Quantum-Controlled Computations. arXiv preprint arXiv:2002.09387(2020).
[12]
Bob Coecke and Ross Duncan. 2011. Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13, 4 (apr 2011), 043016. https://doi.org/10.1088/1367-2630/13/4/043016
[13]
Bob Coecke and Ross Duncan. 2012. Tutorial: Graphical calculus for quantum circuits. In International Workshop on Reversible Computation. Springer, 1–13.
[14]
Andrea Corradini, Dominique Duval, Rachid Echahed, Frédéric Prost, and Leila Ribeiro. 2019. The PBPO graph transformation approach. J. Log. Algebr. Meth. Program. 103 (2019), 213–231. https://doi.org/10.1016/j.jlamp.2018.12.003
[15]
Andrea Corradini, Tobias Heindel, Frank Hermann, and Barbara König. 2006. Sesqui-Pushout Rewriting. In Graph Transformations, ICGT 2006(LNCS, Vol. 4178). Springer, 30–45. https://doi.org/10.1007/11841883_4
[16]
Francisco Durán, Steven Eker, Santiago Escobar, Narciso Martí-Oliet, José Meseguer, Rubén Rubio, and Carolyn L. Talcott. 2020. Programming and symbolic computation in Maude. J. Log. Algebraic Methods Program. 110 (2020). https://doi.org/10.1016/j.jlamp.2019.100497
[17]
Rachid Echahed. 2008. Inductively Sequential Term-Graph Rewrite Systems. In Graph Transformations, ICGT 2008(LNCS, Vol. 5214). Springer, 84–98. https://doi.org/10.1007/978-3-540-87405-8_7
[18]
Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. 2006. Fundamentals of Algebraic Graph Transformation. Springer. https://doi.org/10.1007/3-540-31188-2
[19]
Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. 1973. Graph-Grammars: An Algebraic Approach. In 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973. 167–180. https://doi.org/10.1109/SWAT.1973.11
[20]
Joost Engelfriet and Grzegorz Rozenberg. 1997. Node Replacement Graph Grammars. In Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations. World Scientific, 1–94.
[21]
Jonathan Gorard, Manojna Namuduri, and Xerxes D. Arsiwalla. 2021. ZX-Calculus and Extended Wolfram Model Systems II: Fast Diagrammatic Reasoning with an Application to Quantum Circuit Simplification. CoRR abs/2103.15820(2021). arxiv:2103.15820https://arxiv.org/abs/2103.15820
[22]
A. Habel, K-H. Pennemann, and A. Rensink. 2006. Weakest Preconditions for High-Level Programs. In Graph Transformations (ICGT), Natal, Brazil(Natal, Brazil) (LNCS, Vol. 4178). Springer Verlag, Berlin, 445–460.
[23]
Amar Hadzihasanovic. 2017. The algebra of entanglement and the geometry of composition. PhD, University of Oxford, arXiv:1709.08086(2017).
[24]
Michael Hanus. 2013. Functional Logic Programming: From Theory to Curry. In Programming Logics - Essays in Memory of Harald Ganzinger(Lecture Notes in Computer Science, Vol. 7797), Andrei Voronkov and Christoph Weidenbach (Eds.). Springer, 123–168. https://doi.org/10.1007/978-3-642-37651-1_6
[25]
Jean-Marie Hullot. 1980. Canonical Forms and Unification. In 5th Conference on Automated Deduction, Les Arcs, France, July 8-11, 1980, Proceedings(Lecture Notes in Computer Science, Vol. 87), Wolfgang Bibel and Robert A. Kowalski (Eds.). Springer, 318–334. https://doi.org/10.1007/3-540-10009-1_25
[26]
Graham Hutton. 2016. Programming in Haskell(2 ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781316784099
[27]
Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. 1994. On the Adequacy of Graph Rewriting for Simulating Term Rewriting. ACM Trans. Program. Lang. Syst. 16, 3 (1994), 493–523. https://doi.org/10.1145/177492.177577
[28]
D. Knuth and P. Bendix. 1970. Simple word problems in universal algebra. In Computational Problems in Abstract Algebra, John Leech (Ed.). Pergamon Press, 263–297.
[29]
Yves Lafont. 2009. Diagram Rewriting and Operads. Lecture given at the Thematic school : Operads, CIRM, Luminy (Marseille).
[30]
Yves Lafont and Pierre Rannou. 2008. Diagram Rewriting for Orthogonal Matrices: A Study of Critical Peaks. In Rewriting Techniques and Applications, Andrei ”Voronkov (Ed.). Springer Berlin Heidelberg, 232–245.
[31]
A. Leitsch. 1997. The resolution calculus. Springer. Texts in Theoretical Computer Science.
[32]
Robin Milner, Mads Tofte, and Robert Harper. 1990. Definition of standard ML. MIT Press.
[33]
Detlef Plump. 2005. Confluence of Graph Transformation Revisited. In Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday(Lecture Notes in Computer Science, Vol. 3838), Aart Middeldorp, Vincent van Oostrom, Femke van Raamsdonk, and Roel C. de Vrijer (Eds.). Springer, 280–308. https://doi.org/10.1007/11601548_16
[34]
Christopher M. Poskitt and Detlef Plump. 2010. A Hoare Calculus for Graph Programs. In 5th International Conference on Graph Transformations (ICGT2010)(LNCS, Vol. 6372). Springer, 139–154.
[35]
Arend Rensink. 2003. The GROOVE Simulator: A Tool for State Space Generation. In Second International Workshop on Applications of Graph Transformations with Industrial Relevance, AGTIVE 2003(LNCS, Vol. 3062). Springer, 479–485.
[36]
A. Riazanov and A. Voronkov. 2001. Vampire 1.1 (System Description). In Proceedings of the International Joint Conference on Automated Reasoning (IJCAR’01). Springer LNCS 2083, 376–380.
[37]
J. A. Robinson. 1965. A machine-oriented logic based on the resolution principle. J. Assoc. Comput. Mach. 12 (1965), 23–41.
[38]
S. Schulz. [n.d.]. The E Equational Theorem Prover. http://www4.informatik.tu-muenchen.de/ schulz/WORK/eprover.html.
[39]
Dániel Varró. 2004. Automated Formal Verification of Visual Modeling Languages by Model Checking. Journal of Software and Systems Modeling 3, 2 (May 2004), 85–113.
[40]
Renaud Vilmart, Simon Perdrix, and Emmanuel Jeandel. 2020. Completeness of the ZX-Calculus. Logical Methods in Computer Science 16 (2020).
[41]
Uwe Waldmann. 2002. Cancellative Abelian Monoids and Related Structures in Refutational Theorem Proving (Part I). J. Symb. Comput. 33, 6 (2002), 777–829. https://doi.org/10.1006/jsco.2002.0536
[42]
C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen, C. Theobalt, and D. Topic. 2001. System Description: SPASS version 1.0.0. In Proceedings of the 16th Conference on Automated Deduction (CADE-16). Springer LNCS 1632, 378–382.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
PPDP '21: Proceedings of the 23rd International Symposium on Principles and Practice of Declarative Programming
September 2021
277 pages
ISBN:9781450386890
DOI:10.1145/3479394
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 October 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Equational Reasoning
  2. Graph
  3. Superposition Calculus

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

PPDP 2021

Acceptance Rates

Overall Acceptance Rate 230 of 486 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 33
    Total Downloads
  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media