DL Inference and Training Optimization Towards Speed and Scale
Abstract
References
Recommendations
Training query filtering for semi-supervised learning to rank with pseudo labels
Semi-supervised learning is a machine learning paradigm that can be applied to create pseudo labels from unlabeled data for learning a ranking model, when there is only limited or no training examples available. However, the effectiveness of semi-...
Towards dropout training for convolutional neural networks
Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper ...
Towards making co-training suffer less from insufficient views
Co-training is a famous semi-supervised learning algorithm which can exploit unlabeled data to improve learning performance. Generally it works under a two-view setting (the input examples have two disjoint feature sets in nature), with the assumption ...
Comments
Information & Contributors
Information
Published In
Sponsors
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
- Research
- Refereed limited
Conference
Acceptance Rates
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 122Total Downloads
- Downloads (Last 12 months)17
- Downloads (Last 6 weeks)3
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign inFull Access
View options
View or Download as a PDF file.
PDFeReader
View online with eReader.
eReaderHTML Format
View this article in HTML Format.
HTML Format