skip to main content
10.1145/3347320.3357688acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

AVEC 2019 Workshop and Challenge: State-of-Mind, Detecting Depression with AI, and Cross-Cultural Affect Recognition

Published: 15 October 2019 Publication History

Abstract

The Audio/Visual Emotion Challenge and Workshop (AVEC 2019) 'State-of-Mind, Detecting Depression with AI, and Cross-cultural Affect Recognition' is the ninth competition event aimed at the comparison of multimedia processing and machine learning methods for automatic audiovisual health and emotion analysis, with all participants competing strictly under the same conditions. The goal of the Challenge is to provide a common benchmark test set for multimodal information processing and to bring together the health and emotion recognition communities, as well as the audiovisual processing communities, to compare the relative merits of various approaches to health and emotion recognition from real-life data. This paper presents the major novelties introduced this year, the challenge guidelines, the data used, and the performance of the baseline systems on the three proposed tasks: state-of-mind recognition, depression assessment with AI, and cross-cultural affect sensing, respectively.

References

[1]
Tim Althoff, Kevin Clark, and Jure Leskovec. 2016. Large-scale Analysis of Counseling Conversations: An Application of Natural Language Processing to Mental Health . Transactions of the Association for Computational Linguistics, Vol. 4 (2016), 463--476.
[2]
Shahin Amiriparian, Maurice Gerczuk, Sandra Ottl, Nicholas Cummins, Michael Freitag, Sergey Pugachevskiy, Alice Baird, and Björn Schuller. 2017. Snore sound classification using image-based deep spectrum features. In Proc. of INTERSPEECH 2017, 18th Annual Conference of the International Speech Communication Association. ISCA, Stockholm, Sweden, 3512--3516.
[3]
American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). American Psychiatric Publishing, Arlington, VA.
[4]
Tadas Baltruvsaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. 2018. OpenFace 2.0: Facial Behavior Analysis Toolkit . In Proc. 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). IEEE, Xi'an, P.,R. China, 59--66.
[5]
Amit Baumel and Elad Yom-Tov. 2018. Predicting user adherence to behavioral eHealth interventions in the real world: examining which aspects of intervention design matter most. Translational Behavioral Medicine, Vol. 8, 5 (2018), 793--798.
[6]
Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation Learning: A Review and New Perspectives . IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, 4 (August 2013), 1798--1828.
[7]
Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum Learning. In Proc. International Conference on Machine Learning (ICML). ACM, Montreal, QC, Canada, 41--48.
[8]
Jeffrey F. Cohn, Tomas Simon Kruez, Iain Matthews, Ying Yang, Minh Hoai Nguyen, Margara Tejera Padilla, Feng Zhou, and Fernando De la Torre. 2009. Detecting Depression from Facial Actions and Vocal Prosody. In Proc. 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops . IEEE, Amsterdam, Netherlands. 7 pages.
[9]
Daniel T. Cordaro, Rui Sun, Dacher Keltner, Shanmukh Kamble, Niranjan Huddar, and Galen McNeil. 2018. Universals and cultural variations in 22 emotional expressions across five cultures. Emotion, Vol. 18 (2018), 75--93.
[10]
Ciprian A. Corneanu, Marc O. Simón, Jeffrey F. Cohn, and Sergio E. Guerrero. 2016. Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications . IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, 8 (August 2016), 1548--1568.
[11]
Nicholas Cummins, Stefan Scherer, Jarek Krajewski, Sebastian Schnieder, Julien Epps, and Thomas F Quatieri. 2015. A review of depression and suicide risk assessment using speech analysis. Speech Communication, Vol. 71 (July 2015), 10--49.
[12]
Kerstin Dautenhahn. 2002. The origins of narrative: In search of the transactional format of narratives in humans and other social animals. International Journal of Cognition and Technology, Vol. 1, 1 (2002), 97--123.
[13]
Jun Deng, Nicholas Cummins, Maximilian Schmitt, Kun Qian, Fabien Ringeval, and Björn Schuller. 2017. Speech-based diagnosis of autism spectrum condition by generative adversarial network representations. In Proc., 7th International Conference on Digital Health (DH). ACM, London, UK, 53--57.
[14]
David DeVault, Ron Artstein, Grace Benn, Teresa Dey, Ed Fast, Alesia Gainer, Kallirroi Georgila, Jonathan Gratch, Arno Hartholt, Margaux Lhommet, Gale Lucas, Stacy Marsella, Fabrizio Morbini, Angela Nazarian, Stefan Scherer, Giota Stratou, Apar Suri, David Traum, Rachel Wood, Yuyu Xu, Alberto Rizzo, and Louis-Philippe Morency. 2014. SimSensei Kiosk: A Virtual Human Interviewer for Healthcare Decision Support. In Proc. International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2014. ACM, Paris, France, 1061--1068.
[15]
Sidney K. D'Mello and Jacqueline Kory. 2015. A Review and Meta-Analysis of Multimodal Affect Detection Systems . Comput. Surveys, Vol. 47, 3 (February 2015). Article 43, 36 pages.
[16]
Paul Ekman. 1971. Universals and cultural differences in facial expressions of emotion. In Nebraska Symposium on Motivation, Vol. 19. University of Nebraska Press, Lincoln, NE, 207--283.
[17]
Hillary Anger Elfenbein and Nalini Ambady. 2002. On the universality and cultural specificity of emotion recognition: A meta-analysis. Psychological Bulletin, Vol. 128, 2 (2002), 203--235.
[18]
Anna Esposito, Antonietta M. Esposito, and Carl Vogel. 2015. Needs and challenges in human computer interaction for processing social emotional information. Pattern Recognition Letters, Vol. 66 (November 2015), 41--51. Issue C.
[19]
Florian Eyben, Klaus R. Scherer, Björn Schuller, Johan Sundberg, Elisabeth André, Carlos Busso, Laurence Devillers, Julien Epps, Petri Laukka, Shrikanth S. Narayanan, and Khiet P. Truong. 2016. The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing . IEEE Transactions on Affective Computing, Vol. 7, 2 (April 2016), 190--202.
[20]
Florian Eyben, Felix Weninger, Florian Groß, and Björn Schuller. 2013. Recent Developments in openSMILE, the Munich Open-Source Multimedia Feature Extractor. In Proc. 21st ACM International Conference on Multimedia (ACM MM). ACM, Barcelona, Spain, 835--838.
[21]
Silvia Monica Feraru, Dagmar Schuller, and Björn Schuller. 2015. Cross-Language Acoustic Emotion Recognition: An Overview and Some Tendencies. In Proc. 6th Biannual Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, Xi'an, P.,R. China, 125--131.
[22]
Yuan Gong and Christian Poellabauer. 2017. Topic Modeling Based Multi-modal Depression Detection. In Proc. 7th International Workshop on Audio/Visual Emotion Challenge (AVEC). ACM, Mountain View (CA), USA, 69--76.
[23]
Jonathan Gratch, Ron Artstein, Gale Lucas, Giota Stratou, Stefan Scherer, Angela Nazarian, Rachel Wood, Jill Boberg, David DeVault, Stacy Marsella, David Traum, Skip Rizzo, and Louis-Philippe Morency. 2014. The Distress Analysis Interview Corpus of human and computer interviews. In Proc. 9th International Conference on Language Resources and Evaluation, LREC 2014 . ELRA, Reykjavik, Iceland, 3123--3128.
[24]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Las Vegas, NV, 770--778.
[25]
Marlies Houben, Wim Van Den Noortgate, and Peter Kuppens. 2015. The relation between short term emotion dynamics and psychological well-being: A meta-analysis. Psychological Bulletin, Vol. 141, 4 (July 2015), 901--930.
[26]
Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. 2017. Densely Connected Convolutional Networks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Honolulu, HW, 4700--4708.
[27]
Jian Huang, Ya Li, Jianhua Tao, Zheng Lian, Mingyue Niu, and Minghao Yang. 2018. Multimodal Continuous Emotion Recognition with Data Augmentation Using Recurrent Neural Networks. In Proc. 8th International Workshop on Audio/Visual Emotion Challenge, AVEC'18. ACM, Seoul, South Korea, 57--64.
[28]
Jyoti Joshi, Roland Goecke, Sharifa Alghowinem, Abhinav Dhall, Michael Wagner, Julien Epps, Gordon Parker, and Michael Breakspear. 2013. Multimodal assistive technologies for depression diagnosis and monitoring. Journal on Multimodal User Interfaces, Vol. 7, 3 (2013), 217--228.
[29]
Heysem Kaya and Alexey A. Karpov. 2018. Efficient and effective strategies for cross-corpus acoustic emotion recognition. Neurocomputing, Vol. 275 (January 2018), 1028--034.
[30]
Dimitrios Kollias, Panagiotis Tzirakis, Mihalis A. Nicolaou, Athanasios Papaioannou, Guoying Zhao, Björn Schuller, Irene Kotsia, and Stefanos Zafeiriou. 2019. Deep affect prediction in-the-wild: Aff-wild database and challenge, deep architectures, and beyond. International Journal of Computer Vision, Vol. 127, 6 (2019), 907--929.
[31]
Jean Kossaifi, Robert Walecki, Yannis Panagakis, Jie Shen, Maximilian Schmitt, Fabien Ringeval, Jing Han, Vedhas Pandit, Bjorn Schuller, Kam Star, Elnar Hajiyev, and Maja Pantic. 2019. SEWA DB: A Rich Database for Audio-Visual Emotion and Sentiment Research in the Wild . https://arxiv.org/abs/1901.02839 . 17 pages.
[32]
Peter Koval, Peter Kuppens, Nicholas B. Allen, and Lisa Sheeber. 2012. Getting stuck in depression: The roles of rumination and emotional inertia. Cognition & Emotion, Vol. 26, 8 (2012), 1412--1427.
[33]
Peter Koval, Madeline L. Pe, Kristof Meers, and Peter Kuppens. 2013. Affect dynamics in relation to depressive symptoms: Variable, unstable or inert? Emotion, Vol. 13, 6 (2013), 1132.
[34]
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks . In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). Curran Associates, Inc., Lake Tahoe, NV, 1097--1105.
[35]
Peter Kuppens, Nicholas B. Allen, and Lisa B. Sheeber. 2010. Emotional inertia and psychological maladjustment. Psychological Science, Vol. 21, 7 (2010), 984--991.
[36]
Lin Li. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics, Vol. 45, 1 (March 1989), 255--268.
[37]
Reza Lotfian and Carlos Busso. 2019. Curriculum Learning for Speech Emotion Recognition from Crowdsourced Labels. IEEE Transactions on Audio, Speech & Language Processing, Vol. 27, 4 (2019), 815--826.
[38]
Humberto R. Maturana and Francisco J. Varela. 1987. Tree of Knowledge: The Biological Roots of Human Understanding. New Science Library/Shambhala Publications, Boston, MA.
[39]
Michelle Morales, Stefan Scherer, and Rivka Levitan. 2017. A Cross-modal Review of Indicators for Depression Detection Systems. In Proc, 4th Workshop on Computational Linguistics and Clinical Psychology -- From Linguistic Signal to Clinical Reality. ACL, Vancouver, BC, 1--12.
[40]
World Health Organization. 2017. Depression and Other Common Mental Disorders: Global Health Estimates. Technical Report. World Health Organization. Licence: CC BY-NC-SA 3.0 IGO.
[41]
Vedhas Pandit and Björn Schuller. 2019. On Many-to-Many Mapping Between Concordance Correlation Coefficient and Mean Square Error . https://arxiv.org/abs/1902.05180 . 23 pages.
[42]
Maja Pantic, Nicu Sebe, Jeffrey F. Cohn, and Thomas Huang. 2005. Affective Multimodal Human-computer Interaction. In Proc. 13th Annual ACM International Conference on Multimedia. ACM, Singapore, Singapore, 669--676.
[43]
James W Pennebaker, Matthias R Mehl, and Kate G Niederhoffer. 2003. Psychological Aspects of Natural Language Use: Our Words, Our Selves . Annual Review of Psychology, Vol. 54, 1 (2003), 547--577.
[44]
Nairan Ramirez-Esparza, Cindy K Chung, Ewa Kacewicz, and James W Pennebaker. 2008. The Psychology of Word Use in Depression Forums in English and in Spanish: Texting Two Text Analytic Approaches. In International Conference on Weblogs and Social Media. AAAI, Seattle, WA, 102--108.
[45]
Eva-Maria Rathner, Julia Djamali, Yannik Terhorst, Björn Schuller, Nicholas Cummins, Gudrun Salamon, Christina Hunger-Schoppe, and Harald Baumeister. 2018a. How Did You like 2017? Detection of Language Markers of Depression and Narcissism in Personal Narratives. In Proc. of INTERSPEECH 2018, 19th Annual Conference of the International Speech Communication Association . ISCA, Hyderabad, India, 3388--3392.
[46]
Eva-Maria Rathner, Yannik Terhorst, Nicholas Cummins, Björn Schuller, and Harald Baumeister. 2018b. State of Mind: Classification through Self-reported Affect and Word Use in Speech. In Proc. of INTERSPEECH 2018, 19th Annual Conference of the International Speech Communication Association. ISCA, Hyderabad, India, 267--271.
[47]
Fabien Ringeval, Björn Schuller, Michel Valstarand Ro ddy Cowie, Heysem Kaya, Maximilian Schmitt, Shahin Amiriparian, Nicholas Cummins, Dennis Lalanne, Adrien Michaud, Elvan Ciftci, Hüseyin Gülec, Albert Ali Salah, and Maja Pantic. 2018a. AVEC 2018 Workshop and Challenge: Bipolar Disorder and Cross-Cultural Affect Recognition. In Proc. 8th International Workshop on Audio/Visual Emotion Challenge, AVEC'18. ACM, Seoul, South Korea, 3--13.
[48]
Fabien Ringeval, Björn Schuller, Michel Valstar, Roddy Cowie, and Maja Pantic. 2015. AVEC 2015 -- The 5th International Audio/Visual Emotion Challenge and Workshop. In Proc. 23rd ACM International Conference on Multimedia, MM 2015. ACM, Brisbane, Australia, 1335--1336.
[49]
Fabien Ringeval, Björn Schuller, Michel Valstar, Roddy Cowie, and Maja Pantic. 2017a. Summary for AVEC 2017 -- Real-life Depression, and Affect Recognition Challenge sand Workshop. In Proc. 25th ACM International Conference on Multimedia (ACM MM). ACM, Mountain View, CA, USA, 1963--1964.
[50]
Fabien Ringeval, Björn Schuller, Michel Valstar, Roddy Cowie, and Maja Pantic. 2018b. Summary for AVEC 2018: Bipolar Disorder and Cross-Cultural Affect Recognition. In Proc. 26th ACM International Conference on Multimedia, MM 2018. ACM, Seoul, South Korea, 2111--2112.
[51]
Fabien Ringeval, Björn Schuller, Michel Valstar, Jonathan Gratch, Roddy Cowie, Stefan Scherer, Sharon Mozgai, Nicholas Cummins, and Maja Pantic. 2017b. AVEC 2017 -- Real-life Depression, and Affect Recognition Workshop and Challenge. In Proc. 7th International Workshop on Audio/Visual Emotion Challenge (AVEC). ACM, Mountain View, CA, USA, 3--9.
[52]
James A Russell. 2003. Core affect and the psychological construction of emotion. Psychological review, Vol. 110, 1 (2003), 145.
[53]
James A Russell and Ulrich F Lanius. 1984. Adaptation level and the affective appraisal of environments. Journal of Environmental Psychology, Vol. 4, 2 (1984), 119--135.
[54]
Hesam Sagha, Jun Deng, Maryna Gavryukova, Jing Han, and Björn Schuller. 2016. Cross lingual speech emotion recognition using canonical correlation analysis on principal component subspace. In Proc. 41st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . IEEE, Shanghai, P.,R. China, 5800--5804.
[55]
Robert M Sapolsky. 2004. Social status and health in humans and other animals. Annu. Rev. Anthropol., Vol. 33 (2004), 393--418.
[56]
Klaus R. Scherer, Rainer Banse, and Harald G. Wallbott. 2001. Emotion inferences from vocal expression correlate across languages and cultures. Journal of Cross-Cultural Psychology, Vol. 32, 1 (January 2001), 76--92.
[57]
Stefan Scherer, Giota Stratou, Jonathan Gratch, Jill Boberg, Marwa Mahmoud, Albert (Skip) Rizzo, and Louis-Philippe Morency. 2013. Automatic Behavior Descriptors for Psychological Disorder Analysis. In Proc. 10th IEEE International Conference and Workshops on Automatic Face & Gesture Recognition (FG). IEEE, Shanghai, P.,R. China. 8 pages.
[58]
Stefan Scherer, Giota Stratou, Gale Lucas, Marwa Mahmoud, Jill Boberg, Jonathan Gratch, Albert (Skip) Rizzo, and Louis-Philippe Morency. 2014. Automatic audiovisual behavior descriptors for psychological disorder analysis. Image and Vision Computing, Vol. 32, 10 (October 2014), 648--658.
[59]
Maximilian Schmitt, Fabien Ringeval, and Björn Schuller. 2016. At the border of acoustics and linguistics: Bag-of-Audio-Words for the recognition of emotions in speech. In Proc. of INTERSPEECH 2016, 17th Annual Conference of the International Speech Communication Association . ISCA, San Francisco, CA, USA, 495--499.
[60]
Maximilian Schmitt and Björn Schuller. 2017. openXBOW -- Introducing the Passau Open-Source Crossmodal Bag-of-Words Toolkit . Journal of Machine Learning Research, Vol. 18, 96 (2017), 1--5.
[61]
Björn Schuller, Stefan Steidl, Anton Batliner, Peter B. Marschik, Harald Baumeister, Fengquan Dong, Simone Hantke, Florian B. Pokorny, Eva-Maria Rathner, Katrin D. Bartl-Pokorny, Christa Einspieler, Dajie Zhang, Alice Baird, Shahin Amiriparian, Kun Qian, Zhao Ren, Maximilian Schmitt, Panagiotis Tzirakis, and Stefanos Zafeiriou. 2018. The INTERSPEECH 2018 Computational Paralinguistics Challenge:Atypical & Self-Assessed Affect, Crying & Heart Beats . In Proc. of INTERSPEECH 2018, 19th Annual Conference of the International Speech Communication Association . ISCA, Hyderabad, India, 122--126.
[62]
Björn Schuller, Michel Valstar, Florian Eyben, Roddy Cowie, and Maja Pantic. 2012. AVEC 2012 -- The continuous Audio/Visual Emotion Challenge. In Proc. 14th ACM International Conference on Multimodal Interaction (ICMI). ACM, Santa Monica, CA, USA, 449--456.
[63]
Björn Schuller, Michel Valstar, Florian Eyben, Gary McKeown, Roddy Cowie, and Maja Pantic. 2011. AVEC 2011 -- The First International Audio/Visual Emotion Challenge. In Proc. 4th Biannual International Conference on Affective Computing and Intelligent Interaction (ACII), Vol. II. Springer, Memphis, TN, USA, 415--424.
[64]
Norbert Schwarz and Gerard L. Clore. 1983. Mood, misattribution, and judgements of well-being: Informative and directive functions of affective states. Journal of Personality and Social Psychology, Vol. 45, 3 (September 1983), 512--523.
[65]
Andreas Schwerdtfeger. 2004. Predicting autonomic reactivity to public speaking: don't get fixed on self-report data! International Journal of Psychophysiology, Vol. 52, 3 (2004), 217--224.
[66]
Andreas R Schwerdtfeger and Eva-Maria Rathner. 2016. The ecological validity of the autonomic-subjective response dissociation in repressive coping. Anxiety, Stress, & Coping, Vol. 29, 3 (2016), 241--258.
[67]
Caifeng Shan, Shaogang Gong, and Peter W Mcowan. 2009. Facial expression recognition based on Local Binary Patterns: A comprehensive study. Image and Vision Computing, Vol. 27, 6 (2009), 803--816.
[68]
Stewart Shapiro and Deborah J. MacInnis. 2002. Understanding program-induced mood effects: Decoupling arousal from valence. Journal of Advertising, Vol. 31, 4 (May 2002), 15--26.
[69]
Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. https://arxiv.org/abs/1409.1556 . 14 pages.
[70]
Lukas Stappen, Nicholas Cummins, Eva Messner, Harald Baumeister, Judith Dineley, and Björn Schuller. 2019. Context Modelling Using Hierarchical Attention Networks for Sentiment and Self-assessed Emotion Detection in Spoken Narratives. In Proc. 44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . IEEE, Brighton, United Kingdom, 6680--6684.
[71]
George Trigeorgis, Fabien Ringeval, Raymond Brueckner, Erik Marchi, Mihalis A. Nicolaou, Björn Schuller, and Stefanos Zafeiriou. 2016. Adieu features? End-to-end speech emotion recognition using a deep Convolutional Recurrent Network. In Proc. 41st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . IEEE, Shanghai, P.,R. China, 5200--5204.
[72]
Michel Valstar, Jonathan Gratch, Björn Schuller, Fabien Ringeval, Roddy Cowie, and Maja Pantic. 2016a. Summary for AVEC 2016: Depression, mood, and emotion recognition workshop and challenge. In Proc. 24th ACM International Conference on Multimedia (ACM MM). ACM, Amsterdam, The Netherlands, 1483--1484.
[73]
Michel Valstar, Jonathan Gratch, Björn Schuller, Fabien Ringeval, Denis Lalanne, Mercedes Torres Torres, Stefan Scherer, Giota Stratou, Roddy Cowie, and Maja Pantic. 2016b. AVEC 2016 -- Depression, mood, and emotion recognition workshop and challenge. In Proc. 6th International Workshop on Audio/Visual Emotion Challenge (AVEC). ACM, Amsterdam, The Netherlands, 3--10.
[74]
Michel Valstar, Björn Schuller, Jarek Krajewski, Roddy Cowie, and Maja Pantic. 2013. Workshop summary for the 3rd international Audio/Visual Emotion Challenge and workshop. In Proc. 21st ACM International Conference on Multimedia (ACM MM). ACM, Barcelona, Spain, 1085--1086.
[75]
Michel Valstar, Björn Schuller, Jarek Krajewski, Roddy Cowie, and Maja Pantic. 2014. AVEC 2014: The 4th international Audio/Visual Emotion Challenge and workshop. In Proc. 22nd ACM International Conference on Multimedia (ACM MM) . ACM, Orlando, FL, USA, 1243--1244.
[76]
Kalani Wataraka Gamage, Ting Dang, Vidhyasaharan Sethu, Julien Epps, and Eliathamby Ambikairajah. 2018. Speech-based Continuous Emotion Prediction by Learning Perception Responses Related to Salient Events: A Study Based on Vocal Affect Bursts and Cross-Cultural Affect in AVEC 2018. In Proc. 8th International Workshop on Audio/Visual Emotion Challenge, AVEC'18. ACM, Seoul, South Korea, 47--55.
[77]
Felix Weninger, Fabien Ringeval, Erik Marchi, and Björn Schuller. 2016. Discriminatively trained recurrent neural networks for continuous dimensional emotion recognition from audio. In Proc. 25th International Joint Conference on Artificial Intelligence (IJCAI). IJCAI/AAAI, New York City, NY, USA, 2196--2202.
[78]
James R. Williamson, Thomas F. Quatieri, Brian S. Helfer, Rachelle Horwitz, Bea Yu, and Daryush D. Mehta. 2013. Vocal Biomarkers of Depression Based on Motor Incoordination. In Proc. 3rd ACM International Workshop on Audio/Visual Emotion Challenge (AVEC'13). ACM, Barcelona, Spain, 41--48.
[79]
Georgios N. Yannakakis, Roddy Cowie, and Carlos Busso. 2017. The ordinal nature of emotions. In Proc. 7th Biannual Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, San Antonio, TX, 248--255.
[80]
Biqiao Zhang, Emily Mower Provost, and Georg Essl. 2017b. Cross-corpus acoustic emotion recognition with multi-task learning: Seeking common ground while preserving differences. IEEE Transactions on Affective Computing, Vol. 10, 1 (March 2017), 85--99.
[81]
Zixing Zhang, Nicholas Cummins, and Björn Schuller. 2017a. Advanced data exploitation in speech analysis -- An overview. IEEE Signal Processing Magazine, Vol. 34, 4 (July 2017), 107--129.
[82]
Jinming Zhao, Ruichen Li, Shizhe Chen, and Qin Jin. 2018. Multi-modal Multi-cultural Dimensional Continues Emotion Recognition in Dyadic Interactions. In Proc. 8th International Workshop on Audio/Visual Emotion Challenge, AVEC'18. ACM, Seoul, South Korea, 65--72.

Cited By

View all

Index Terms

  1. AVEC 2019 Workshop and Challenge: State-of-Mind, Detecting Depression with AI, and Cross-Cultural Affect Recognition

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    AVEC '19: Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop
    October 2019
    96 pages
    ISBN:9781450369138
    DOI:10.1145/3347320
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 15 October 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. affective computing
    2. cross-cultural emotion
    3. state-of-mind

    Qualifiers

    • Research-article

    Conference

    MM '19
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 52 of 98 submissions, 53%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)443
    • Downloads (Last 6 weeks)44
    Reflects downloads up to 23 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Facial action units guided graph representation learning for multimodal depression detectionNeurocomputing10.1016/j.neucom.2024.129106619(129106)Online publication date: Feb-2025
    • (2024)The Role of Selected Speech Signal Characteristics in Discriminating Unipolar and Bipolar DisordersSensors10.3390/s2414472124:14(4721)Online publication date: 20-Jul-2024
    • (2024)Machine Learning for Multimodal Mental Health Detection: A Systematic Review of Passive Sensing ApproachesSensors10.3390/s2402034824:2(348)Online publication date: 6-Jan-2024
    • (2024)Hypergraph Neural Network for Multimodal Depression RecognitionElectronics10.3390/electronics1322454413:22(4544)Online publication date: 19-Nov-2024
    • (2024)Emotional Intelligence in Voice Assistants : Advancing Human-AI InteractionInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology10.32628/CSEIT24105103910:5(513-523)Online publication date: 9-Oct-2024
    • (2024)Emotional Intelligence in Voice Assistants : Advancing Human-AI InteractionInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology10.32628/CSEIT24105102010:5(449-460)Online publication date: 9-Oct-2024
    • (2024)Adapting the Number of Questions Based on Detected Psychological Distress for Cognitive Behavioral Therapy With an Embodied Conversational Agent: Comparative StudyJMIR Formative Research10.2196/500568(e50056)Online publication date: 14-Mar-2024
    • (2024)An Intra- and Inter-Emotion Transformer-Based Fusion Model with Homogeneous and Diverse Constraints Using Multi-Emotional Audiovisual Features for Depression DetectionIEICE Transactions on Information and Systems10.1587/transinf.2023HCP0006E107.D:3(342-353)Online publication date: 1-Mar-2024
    • (2024)Enhanced Depression Detection through Optimally Weighted Spectrogram Feature FusionProceedings of the 2024 13th International Conference on Computing and Pattern Recognition10.1145/3704323.3704375(226-232)Online publication date: 25-Oct-2024
    • (2024)Investigating Generalizability of Speech-based Suicidal Ideation Detection Using Mobile PhonesProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314527:4(1-38)Online publication date: 12-Jan-2024
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media