skip to main content
10.1145/3173162.3173170acmconferencesArticle/Chapter ViewAbstractPublication PagesasplosConference Proceedingsconference-collections
research-article
Public Access

Gloss: Seamless Live Reconfiguration and Reoptimization of Stream Programs

Published: 19 March 2018 Publication History

Abstract

An important class of applications computes on long-running or infinite streams of data, often with known fixed data rates. The latter is referred to as synchronous data flow ~(SDF) streams. These stream applications need to run on clusters or the cloud due to the high performance requirement. Further, they require live reconfiguration and reoptimization for various reasons such as hardware maintenance, elastic computation, or to respond to fluctuations in resources or application workload. However, reconfiguration and reoptimization without downtime while accurately preserving program state in a distributed environment is difficult. In this paper, we introduce Gloss, a suite of compiler and runtime techniques for live reconfiguration of distributed stream programs. Gloss, for the first time, avoids periods of zero throughput during the reconfiguration of both stateless and stateful SDF based stream programs. Furthermore, unlike other systems, Gloss globally reoptimizes and completely recompiles the program during reconfiguration. This permits it to reoptimize the application for entirely new configurations that it may not have encountered before. All these Gloss operations happen in-situ, requiring no extra hardware resources. We show how Gloss allows stream programs to reconfigure and reoptimize with no downtime and minimal overhead, and demonstrate the wider applicability of it via a variety of experiments.

References

[1]
Tyler Akidau, Alex Balikov, Kaya Bekirouglu, Slava Chernyak, Josh Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013. MillWheel: Fault-tolerant Stream Processing at Internet Scale. Proc. VLDB Endow. Vol. 6, 11 (Aug. 2013), 1033--1044.
[2]
W. Zhu, C. L. Wang, and F. Lau. 2002. JESSICA2: a distributed Java Virtual Machine with transparent thread migration support Cluster Computing, 2002. Proceedings. 2002 IEEE International Conference on. 381--388.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ASPLOS '18: Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems
March 2018
827 pages
ISBN:9781450349116
DOI:10.1145/3173162
  • cover image ACM SIGPLAN Notices
    ACM SIGPLAN Notices  Volume 53, Issue 2
    ASPLOS '18
    February 2018
    809 pages
    ISSN:0362-1340
    EISSN:1558-1160
    DOI:10.1145/3296957
    Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 March 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. cluster-wide dynamic recompilation
  2. computation handover
  3. distributed compiler
  4. distributed dynamic recompilation
  5. downtime-free live reconfiguration
  6. global optimization
  7. program migration
  8. state transfer

Qualifiers

  • Research-article

Funding Sources

  • Defense Advanced Research Projects Agency
  • U.S. Department of Energy
  • Singapore Ministry of Education

Conference

ASPLOS '18

Acceptance Rates

ASPLOS '18 Paper Acceptance Rate 56 of 319 submissions, 18%;
Overall Acceptance Rate 535 of 2,713 submissions, 20%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)170
  • Downloads (Last 6 weeks)36
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media