skip to main content
10.1145/2968220.2968248acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvinciConference Proceedingsconference-collections
research-article

Deep Exploration of Multidimensional Data with Linkable Scatterplots

Published: 24 September 2016 Publication History

Abstract

Clarity, simplicity and visual adjustability to the preference of the analyst are key aspects of the visualization techniques required by visual analytics in broad sense. Scatterplots and scatterplot matrices are commonly used for visually analyzing multidimensional multivariate data. This paper presents a new approach for deep visual exploration of large multi-attribute data using linkable scatterplots. Proposed method overcomes the limitations of the single scatterplot by providing more plot panels for better comparison while it reduces the unnecessary number of panels of the scatterplot matrix method. The panels are fully interactive and linking together where variables can be mapped on axes independently or on common visual attributes such as color, size and shape. We illustrate the effectiveness of proposed linkable scatterplot method on various data sets.

References

[1]
Thomas, J. and Kielman, J. 2009. Challenges for Visual Analytics, Information Visualization, 8(4), pp. 309--314.
[2]
Wong, P. C. Shen, H. W. Johnson, C. R., Chen, C. and Ross, R. B. 2012. The Top 10 Challenges in Extreme-Scale Visual Analytics, IEEE Computer Graphics and Applications, pp. 63--67.
[3]
Huang, T., Lan, L., Fang, X., An, P., Min, J., and Wang, F. 2015. Promises and Challenges of Big Data Computing in Health Sciences. Big Data Research, 2, 2015, pp. 2--11.
[4]
Wassan, J. T. 2015. "Discovering Big Data Modelling for Educational World", Procedia -- Social and Behavioural Sciences, 176, 2015, pp. 642--649.
[5]
Simon, P. 2014. The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions. J. Wiley & Sons, NJ.
[6]
Ware, C. 2004. Information Visualization: Perception for Design. 2nd ed., San Francisco, CA, USA: Morgan Kaufmann.
[7]
Sawant, N. and Shah, H. 2013. Big Data Visualization Patterns. Big Data Application Architecture Q & A: A Problem-Solution Approach, pp. 79--90.
[8]
Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F. 2010. Mastering the Information Age: Solving Problems with Visual Analytics. Eurographics Association.
[9]
Thomas, J. J., Cook, K. A. 2005. Illuminating the Path. IEEE Computer Society Press, Los Alamitos.
[10]
Yau, N. 2011. Visualize This: The FlowingData Guide to Design, Visualization, and Statistics. Wiley.
[11]
Majumdar, N. and Banerjee, S. 2012. MATLAB Graphics and Data Visualization Cookbook. PACKT publishing.
[12]
Friendly, M. and Denis, D. 2005. The Early Origins and Development of the Scatterplot. Journal of the History of the Behavioral Sciences, 41(2), pp. 103--130.
[13]
Packham, I. S. J., Rafiq, M. Y., Borthwick, M. F. and Denham, S. L. 2005. Interactive Visualisation for Decision Support and Evaluation of Robustness - In Theory and In Practice. Advanced Engineering Informatics, 19, pp. 263--280.
[14]
Gapminder, http://www.gapminder.org/ (last accessed 10/06/2015).
[15]
Miner3D, http://www.miner3d.com/ (last accessed 10/06/2015).
[16]
Steed, C. A., Ricciuto, D. M., Shipman, G., Smith, B, Thornton, P. E., Wang, D., Shi, X. and Williams, D. N. 2013. Big Data Visual Analytics for exploratory earth system simulation analysis", Computers & Geosciences, 61, 2013, pp. 71--82.
[17]
Pearson, K. 1901. On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine, 2(6), pp. 559--572.
[18]
Jruskal, J. B. and Wish, M. 1977. Multidimensional Scaling. Beverly Hills: Sage Publications.
[19]
Kohonen, T. 1998. The Self-organizing Map. Neurocomputing, 21(1-3), pp. 1--6.
[20]
Sedlmair, M., Munzner, T. and Tory, M. 2013. Empirical Guidance on Scatterplot and Dimension Reduction Technique Choices. IEEE Transactions on Visualization and Computer Graphics, 19(12), pp. 2634--2643.
[21]
Keim, D. A., Hao, M. C., Dayal, U., Janetzko, H. and Bak, P. Generalized Scatter Plots. Information Visualization, 9, pp. 301--311.
[22]
Fua, Y. H., Ward, M. O. and Rundensteiner, E. A. 2000. Structure-Based Brushes: A Mechanism for Navigating Hierarchically Organized data and Information Spaces. IEEE Transactions on Visualization and Computer Graphics, 6(2), pp. 150--159.
[23]
Viau, C., McGuffin, M. J., Chiricota, Y. Jurisica, I. 2010. The FlowVizMenu and Parallel Scatterplot Matrix: Hybrid Multidimensional Visualizations for Network Exploration. IEEE Trans. on Visualization and Computer Graphics, vol 16, pp. 1100--1108.
[24]
Andrews, D. F. 1972. Plots of High Dimensional Data. Biometrics, vol. 29, pp. 125--136.
[25]
Alpern, B. and Carter, L. 1991. Hyperbox. Proc. Visualization '91, San Diego, CA, pp. 133--139.
[26]
Becker, R. A., Cleveland, W. S., Shyu, M. J. 1996. The Visual Design and Control of Trellis Display. Journal of Computational and Graphical Statistics, 5(2), pp. 123--155.
[27]
Inselberg, A. 1985. The Plane with Parallel Coordinates. The Visual Computer, 1, pp. 69--97.
[28]
Tory, M. Sprague, D. Wu, F., So W. Y. and Munzner, T. 2007. Spatialization Design: Comparing Points and Landscape. IEEE Trans. On Visualization and Computer Graphics, 13(6), pp.1262--1269.
[29]
Tory, M. Swindells, C. and Dreezer, R. 2009. Comparing Dot and Landscape Spatialization for Visual Memory Differences. IEEE Trans. On Visualization and Computer Graphics, 15(6), pp.1033--1039.
[30]
Rensink R. and Baldridge, G. 2010. The Perception of Correlation in Scatter Plot. Computer Graphics Forum, 29(3), pp. 1203--1210.
[31]
SAS Institute Inc. 2015. Data Visualization Techniques - From Basics to Big Data with SAS Visual Analytics. White paper.
[32]
Tableau, http://www.tableau.com/ (accessed by 10/06/2015)
[33]
Nguyen, Q. V., Qian, Y., Huang, M. L. and Zhang, J. TabuVis: A Tool for Visual Analytics Multidimensional Datasets. SCIENCE CHINA Information Sciences, 052105(12), 2013.
[34]
Sadana, R. and Stasko, J. 2014. Designing and Implementing an Interactive Scatterplot Visualization for a Tablet Computer. Proc. the 2014 International Working Conference on Advanced Visual Interfaces (AVI'14), ACM, pp. 265--272.
[35]
Cui, Q., Ward, M. O., Rundensteiner, E. A. 2006. Enhancing Scatterplot Matrices for Data with Ordering or Spatial Attributes. Proc. Visualization and Data Analysis, SPIE Proceedings Vol. 6060.
[36]
Elmqvist, N., Dragicevic, P. and Fekete, J.-D. 2008. Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation. IEEE Transactions on Visualization and Computer Graphics, 14(6), pp. 1141--1148.
[37]
Albuquerque, G., Eisemann, M., Lehmann, D. J., Theisel, H. and Magnorm, M. 2009. Quality-Based Visualization Matrices. Proc. Vision, Modeling, and Visualization (VMV).
[38]
Heinrich, J., Stasko, J. and Weiskopf, D. 2012. The Parallel Coordinates Matrix. Computer Graphics Forum, 31(3), pp. 37--41.
[39]
Im, J. F., McGuffin, M. J., Leung, R. 2013. GPLOM: The Generalized Plot Matrix for Visualizing Multidimensional Multivariate Data. IEEE Trans Vis Comput Graph, 19(12), pp. 2606--2614.
[40]
Emerson, W., Green, W. A., Schloerke, B., Crowley, J., Cook, D., Hofmann, H. and Wickham, H. 2013. The Generalized Pairs Plot. J. of Computational and Graphical Statistics, 22(1), pp. 79--91.
[41]
Deray, K. and Simoff, S. J. 2009. Designing Technology for Visualisation of Interactions on Mobile Devices. Journal of Computing Science and Engineering, 3(4), pp. 218--237.
[42]
Iris Dataset, https://archive.ics.uci.edu/ml/datasets/Iris.
[43]
Tasmanian Crash Data, http://data.gov.au/dataset/tasmanian/resource/e73ea42f-30ee-4a02-a2cb-d3e426c1f0b3
[44]
Agrawa, R., Ikant, R. and Thomas, D. 2005. Privacy Preserving OLAP. SIGMOD Conference, pp. 251--262.
[45]
Nguyen, Q. V., Zhang, K., and Simoff, S. 2015. Unlocking the Complexity of Port Data with Visualization. IEEE Transactions on Human-Machine Systems, 45(2), pp. 272--279.
[46]
Automobile Data Set. https://archive.ics.uci.edu/ml/datasets/Automobile.
[47]
Adult Data Set. https://archive.ics.uci.edu/ml/datasets/Adult.
[48]
Turkay, C., Lundervold, A., Lundervold, A. J., & Hauser, H. 2012. Representative Factor Generation for the Interactive Visual Analysis of High-Dimensional Data. IEEE Transactions on Visualization and Computer Graphics, 18(12), pp. 2621--2630.
[49]
Yuan, X., Ren, D., Wang, Z., & Guo, C. 2013. Dimension Projection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of High Dimensional Data. IEEE Transactions on Visualization and Computer Graphics, 19(12), pp. 2625--2633.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
VINCI '16: Proceedings of the 9th International Symposium on Visual Information Communication and Interaction
September 2016
173 pages
ISBN:9781450341493
DOI:10.1145/2968220
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 September 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Scatterplot matrix
  2. interactive
  3. linkable scatterplots
  4. multidimensional data
  5. multivariate data

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

VINCI '16

Acceptance Rates

VINCI '16 Paper Acceptance Rate 14 of 42 submissions, 33%;
Overall Acceptance Rate 71 of 193 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media