skip to main content
10.1145/2939672.2945356acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
invited-talk

People, Computers, and The Hot Mess of Real Data

Published: 13 August 2016 Publication History

Abstract

In practice, end-to-end data analysis is rarely a cleanly engineered process. Acquiring data can be tricky. Data assessment, wrangling and feature extraction are time-consuming and subjective. Models and algorithms used to derive data products are highly contextualized by time-varying properties of data sources, code and application needs. All of these issues would ideally benefit from an organizational view, but are often driven by individual users. Viewed holistically, both agile analytics and the establishment of analytic pipelines involve interactions between people, computation and infrastructure. In this talk I'll share some anecdotes from our research, user studies, and field experience with companies (Trifacta, Captricity), as well as an emerging open-source project (Ground).

Supplementary Material

MP4 File (kdd2016_hellerstein_people_computers_01-acm.mp4)

Cited By

View all

Index Terms

  1. People, Computers, and The Hot Mess of Real Data

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    August 2016
    2176 pages
    ISBN:9781450342322
    DOI:10.1145/2939672
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 August 2016

    Check for updates

    Author Tags

    1. artificial intelligence
    2. data mining
    3. data science
    4. real data
    5. user studies

    Qualifiers

    • Invited-talk

    Conference

    KDD '16
    Sponsor:

    Acceptance Rates

    KDD '16 Paper Acceptance Rate 66 of 1,115 submissions, 6%;
    Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

    Upcoming Conference

    KDD '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)6
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 29 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media