skip to main content
10.1145/2814270.2814275acmconferencesArticle/Chapter ViewAbstractPublication PagessplashConference Proceedingsconference-collections
research-article

Tracing vs. partial evaluation: comparing meta-compilation approaches for self-optimizing interpreters

Published: 23 October 2015 Publication History

Abstract

Tracing and partial evaluation have been proposed as meta-compilation techniques for interpreters to make just-in-time compilation language-independent. They promise that programs executing on simple interpreters can reach performance of the same order of magnitude as if they would be executed on state-of-the-art virtual machines with highly optimizing just-in-time compilers built for a specific language. Tracing and partial evaluation approach this meta-compilation from two ends of a spectrum, resulting in different sets of tradeoffs. This study investigates both approaches in the context of self-optimizing interpreters, a technique for building fast abstract-syntax-tree interpreters. Based on RPython for tracing and Truffle for partial evaluation, we assess the two approaches by comparing the impact of various optimizations on the performance of an interpreter for SOM, an object-oriented dynamically-typed language. The goal is to determine whether either approach yields clear performance or engineering benefits. We find that tracing and partial evaluation both reach roughly the same level of performance. SOM based on meta-tracing is on average 3x slower than Java, while SOM based on partial evaluation is on average 2.3x slower than Java. With respect to the engineering, tracing has however significant benefits, because it requires language implementers to apply fewer optimizations to reach the same level of performance.

Supplementary Material

Auxiliary Archive (p821-marr-s.zip)
The provided archive includes a VirtualBox image with the experiments described in the paper, as well as the original data set on which we based our analysis and the sources for the studied implementations. Setup instructions and details on this material are available at: http://stefan-marr.de/papers/oopsla-marr-ducasse-meta-tracing-vs-partial-evaluation-artifacts/

References

[1]
L. Augustsson. Partial Evaluation in Aircraft Crew Planning. In Proc. of PEPM, pages 127–136. ACM, 1997.
[2]
V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dynamic Optimization System. In Proc. of PLDI, pages 1–12. ACM, 2000. ISBN 1-58113-199-2.
[3]
M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte, N. Tillmann, and H. Venter. Spur: A trace-based jit compiler for cil. In Proc. of OOPSLA, pages 708–725. ACM, 2010.
[4]
S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, B. Moss, A. Phansalkar, D. Stefanovi´c, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proc. of OOPSLA, pages 169–190. ACM, 2006.
[5]
C. F. Bolz and L. Tratt. The Impact of Meta-Tracing on VM Design and Implementation. Science of Computer Programming, 2013.
[6]
C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the Meta-level: PyPy’s Tracing JIT Compiler. In Proc. of ICOOOLPS, pages 18–25. ACM, 2009.
[7]
C. F. Bolz, M. Leuschel, and D. Schneider. Towards a Jitting VM for Prolog Execution. In Proc. of PPDP, pages 99–108. ACM, 2010. ISBN 978-1-4503-0132-9.
[8]
C. F. Bolz, L. Diekmann, and L. Tratt. Storage Strategies for Collections in Dynamically Typed Languages. In Proc. of OOPSLA, pages 167–182. ACM, 2013.
[9]
S. Brunthaler. Efficient Interpretation Using Quickening. In Proc. of DLS, pages 1–14. ACM, Oct. 2010.
[10]
K. Casey, M. A. Ertl, and D. Gregg. Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters. ACM Trans. Program. Lang. Syst., 29(6):37, 2007.
[11]
C. Chambers, D. Ungar, and E. Lee. An Efficient Implementation of SELF a Dynamically-Typed Object-Oriented Language Based on Prototypes. In Proc. of OOPSLA, pages 49– 70. ACM, 1989. ISBN 0-89791-333-7.
[12]
Y. Futamura. Partial Evaluation of Computation Process– An Approach to a Compiler-Compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1971/1999.
[13]
Y. Futamura. Partial Computation of Programs. In E. Goto, K. Furukawa, R. Nakajima, I. Nakata, and A. Yonezawa, editors, RIMS Symposia on Software Science and Engineering, volume 147 of LNCS, pages 1–35. Springer, 1983.
[14]
A. Gal, C. W. Probst, and M. Franz. HotpathVM: An Effective JIT Compiler for Resource-constrained Devices. In Proc. of VEE, pages 144–153. ACM, 2006. ISBN 1-59593-332-6.
[15]
M. Haupt, R. Hirschfeld, T. Pape, G. Gabrysiak, S. Marr, A. Bergmann, A. Heise, M. Kleine, and R. Krahn. The SOM Family: Virtual Machines for Teaching and Research. In Proc. of ITiCSE, pages 18–22. ACM Press, June 2010.
[16]
U. Hölzle, C. Chambers, and D. Ungar. Debugging Optimized Code with Dynamic Deoptimization. In Proc. of PLDI, pages 32–43. ACM, 1992. ISBN 0-89791-475-9.
[17]
C. Humer, C. Wimmer, C. Wirth, A. Wöß, and T. Würthinger. A Domain-Specific Language for Building Self-Optimizing AST Interpreters. In Proc. of GPCE, pages 123–132. ACM, 2014.
[18]
C. Häubl, C. Wimmer, and H. Mössenböck. Context-sensitive Trace Inlining for Java. Computer Languages, Systems & Structures, 39(4):123––141, 2013.
[19]
U. Hölzle, C. Chambers, and D. Ungar. Optimizing Dynamically-Typed Object-Oriented Languages With Polymorphic Inline Caches. In Proc. of ECOOP, volume 512 of LNCS, pages 21–38. Springer, 1991. ISBN 3-540-54262-0.
[20]
T. Kalibera, P. Maj, F. Morandat, and J. Vitek. A Fast Abstract Syntax Tree Interpreter for R. In Proc. of VEE, pages 89–102. ACM, 2014. ISBN 978-1-4503-2764-0.
[21]
S. Marr, T. Pape, and W. De Meuter. Are we there yet? simple language implementation techniques for the 21st century. IEEE Software, 31(5):60–67, September 2014.
[22]
S. Marr, C. Seaton, and S. Ducasse. Zero-overhead metaprogramming: Reflection and metaobject protocols fast and without compromises. In Proc. of PLDI, pages 545–554. ACM, 2015.
[23]
T. A. Proebsting. Optimizing an ANSI C Interpreter with Superoperators. In Proc. of POPL, pages 322–332. ACM, 1995.
[24]
A. Rigo and S. Pedroni. PyPy’s Approach to Virtual Machine Construction. In Proc. of DLS, pages 944–953. ACM, 2006.
[25]
G. Sullivan. Dynamic Partial Evaluation. In Programs as Data Objects, volume 2053 of LNCS, pages 238–256. Springer, 2001.
[26]
C. Wimmer and S. Brunthaler. ZipPy on Truffle: A Fast and Simple Implementation of Python. In Proc. of OOPSLA Workshops, SPLASH ’13, pages 17–18. ACM, 2013.
[27]
T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and C. Wimmer. Self-Optimizing AST Interpreters. In Proc. of DLS, pages 73–82, 2012.
[28]
T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM to Rule Them All. In Proc. of Onward!, pages 187–204. ACM, 2013. ISBN 978-1-4503-2472-4.
[29]
A. Wöß, C. Wirth, D. Bonetta, C. Seaton, C. Humer, and H. Mössenböck. An Object Storage Model for the Truffle Language Implementation Framework. In Proc. of PPPJ, pages 133–144. ACM, 2014. ISBN 978-1-4503-2926-2.
[30]
W. Zhang, P. Larsen, S. Brunthaler, and M. Franz. Accelerating Iterators in Optimizing AST Interpreters. In Proc. of OOPSLA, pages 727–743. ACM, 2014.

Cited By

View all

Index Terms

  1. Tracing vs. partial evaluation: comparing meta-compilation approaches for self-optimizing interpreters

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    OOPSLA 2015: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
    October 2015
    953 pages
    ISBN:9781450336895
    DOI:10.1145/2814270
    • cover image ACM SIGPLAN Notices
      ACM SIGPLAN Notices  Volume 50, Issue 10
      OOPSLA '15
      October 2015
      953 pages
      ISSN:0362-1340
      EISSN:1558-1160
      DOI:10.1145/2858965
      • Editor:
      • Andy Gill
      Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 23 October 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. case study
    2. comparison
    3. just-in-time compilation
    4. language implementation
    5. meta-tracing
    6. partial evaluation
    7. self-optimizing interpreters

    Qualifiers

    • Research-article

    Conference

    SPLASH '15
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 268 of 1,244 submissions, 22%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)31
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 14 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media