skip to main content
10.1145/2769493.2769555acmotherconferencesArticle/Chapter ViewAbstractPublication PagespetraConference Proceedingsconference-collections
research-article

Position paper: accessible human-robot interaction (AHRI)

Published: 01 July 2015 Publication History

Abstract

Assistive robots that address different impairments and continuously changing capabilities by providing manifold interactions based on profiles are not targeted in current research. Substantiated by a survey of human-robot interaction for assistive systems, we claim the need for establishing the innovative research topic of Accessible Human-Robot Interaction (AHRI). It is shown that limitations or loss of motoric, sensory, and mental capabilities as well as multiple impairments and resulting barriers regarding interaction, communication and perception are not sufficiently incorporated in designs of assistive robots. To achieve a design for all, fundamental research on varying needs, capabilities, and preferences along with derivation of profiles and developments of new adaptive and adaptable interaction concepts is necessary.

References

[1]
J. Abascal, A. Aizpurua, I. Cearreta, B. Gamecho, N. Garay-Vitoria, and R. Miñón. Automatically generating tailored accessible user interfaces for ubiquitous services. Proc. 13th ACM SIGACCESS, pages 187--194., ACM, 2011.
[2]
M. Brell, J. Meyer, T. Frenken, and A. Hein. A mobile robot for self-selected gait velocity assessments in assistive environments: A robotic driven approach to bring assistive technologies into established homes. Proc. 3rd PETRA, pages 15:1--15:8, New York, NY, USA, ACM, 2010.
[3]
A. Cesta, F. Pecora, R. Rasconi, L. Iocchi, R. Leone, and D. Nardi. Lucia: a cognitive robot in an intelligent environment. Proc. Workshop on Socially Assistive Robotics, 2006.
[4]
W.-L. Chang, S. Šabanovic, and L. Huber. Use of seal-like robot paro in sensory group therapy for older adults with dementia. Proc. 8th ACM/IEEE HRI, pages 101--102, Piscataway, NJ, USA, IEEE Press, 2013.
[5]
S. Coradeschi, A. Cesta, G. Cortellessa, L. Coraci, J. Gonzalez, L. Karlsson, F. Furfari, A. Loutfi, A. Orlandini, F. Palumbo, F. Pecora, S. von Rump, A. Stimec, J. Ullberg, and B. Otslund. Giraffplus: Combining social interaction and long term monitoring for promoting independent living. Proc. 6th HSI, pages 578--585, June 2013.
[6]
K. Gajos and D. S. Weld. Supple: automatically generating user interfaces. Proc. 9th IUI, pages 93--100. ACM, 2004.
[7]
G. Galatas, C. McMurrough, G. L. Mariottini, and F. Makedon. eyedog: An assistive-guide robot for the visually impaired. Proc. 4th PETRA, pages 58:1--58:8, New York, NY, USA, ACM, 2011.
[8]
P. Gregor, A. F. Newell, and M. Zajicek. Designing for dynamic diversity: interfaces for older people. Proc. 5th ASSETS, pages 151--156. ACM, 2002.
[9]
M. Hans, B. Graf, and R. Schraft. Robotic home assistant care-o-bot: past-present-future. Proc.IEEE ROMAN 2002, pages 380--385, 2002.
[10]
P. Harmo, T. Taipalus, J. Knuuttila, J. Vallet, and A. Halme. Needs and solutions - home automation and service robots for the elderly and disabled. Proc. IROS 2005, pages 3201--3206, Aug 2005.
[11]
K. Holbø, S. Bøthun, and Y. Dahl. Safe walking technology for people with dementia: What do they want? Proc. ASSETS '13, pages 21:1--21:8, NY, USA, 2013. ACM.
[12]
C. Jung and V. Hahn. Guide--adaptive user interfaces for accessible hybrid tv applications. In Second W3C Workshop Web & TV, 2011.
[13]
R. Khosla, M.-T. Chu, R. Kachouie, K. Yamada, and T. Yamaguchi. Embodying care in matilda: An affective communication robot for the elderly in australia. In Proc. IHI '12, pages 295--304, New York, NY, USA, ACM, 2012.
[14]
A. Kristoffersson, S. Coradeschi, K. S. Eklundh, and A. Loutfi. Towards measuring quality of interaction in mobile robotic telepresence using sociometric badges. Paladyn, Journal of Behavioral Robotics, 4(1):34--48, September 2013.
[15]
G. Lacey and K. M. Dawson-Howe. The application of robotics to a mobility aid for the elderly blind. Robotics and Autonomous Systems, 23(4):245--252, 1998. Intelligent Robotics Systems - SIRS'97.
[16]
G. W. Lang. An expert autonomous vacuum cleaner robot. Proc. IEA/AIE '88, pages 598--604, New York, NY, USA, ACM, 1988.
[17]
D. Lazewatsky and W. Smart. Accessible interfaces for robot assistants. 2014 RO-MAN, pages 106--111, Aug 2014.
[18]
J. Lee, G. Obinata, D. Stefanov, and C. Nagai. A preliminary study on the response of autistic persons to a robot feedback based on visual stimuli. Paladyn, Journal of Behavioral Robotics, 4(2):73--82, December 2013.
[19]
M. K. Lee, J. Forlizzi, P. E. Rybski, F. Crabbe, W. Chung, J. Finkle, E. Glaser, and S. Kiesler. The snackbot: Documenting the design of a robot for long-term human-robot interaction. Proc. HRI '09, pages 7--14, New York, NY, USA, ACM, 2009.
[20]
C. Loitsch, E. Chalkia, E. Bekiaris, and G. Weber. Tailored versus prioritized configuration towards accessibility. a study on weighted preferences. Proc. UAHCI 2014, Springer, 2014.
[21]
C. Loitsch, A. Stiegler, C. Strobbe, D. Tzovaras, K. Votis, G. Weber, and G. Zimmermann. Improving accessibility by matching user needs and preferences. In Proc. AAATE 2013, pages 1357--1365, Vilamoura, Portugal, IOS Press, 2013.
[22]
Q. Meng and M. Lee. Design issues for assistive robotics for the elderly. Advanced Engineering Informatics, 20(2):171--186, 2006. Engineering Informatics for Eco-Design.
[23]
W.-H. Mou, M.-F. Chang, C.-K. Liao, Y.-H. Hsu, S.-H. Tseng, and L.-C. Fu. Context-aware assisted interactive robotic walker for parkinson's disease patients. In Proc. IEEE/RSJ IROS 2012, pages 329--334, Oct 2012.
[24]
Z. Obrenovic, J. Abascal, and D. Starcevic. Universal accessibility as a multimodal design issue. Communications of the ACM, 50(5):83--88, 2007.
[25]
M. Peissner, D. Häbe, D. Janssen, and T. Sellner. Myui: generating accessible user interfaces from multimodal design patterns. In Proce. 4th ACM SIGCHI, pages 81--90. ACM, 2012.
[26]
M. Pollack, S. Engberg, J. Matthews, S. Thrun, L. Brown, D. Colbry, C. Orosz, B. Peintner, S. Ramakrishnan, J. Dunbar-Jacob, C. McCarthy, M. Montemerlo, J. Pineau, and N. Roy. Pearl: A mobile robotic assistant for the elderly. In Workshop on Automation as Caregiver: the Role of Intelligent Technology in Elder Care (AAAI), August 2002.
[27]
N. Reich and F. Eyssel. Attitudes towards service robots in domestic environments: The role of personality characteristics, individual interests, and demographic variables. Paladyn, Journal of Behavioral Robotics, 4(2):123--130, December 2013.
[28]
A. J. Rentschler, R. A. Cooper, B. Blasch, and M. L. Boninger. Intelligent walkers for the elderly: Performance and safety testing of va-pamaid robotic walker. Journal of Rehabilitation Research and Development, 40, No. 5:423--432, 2003.
[29]
M. Salem, G. Lakatos, F. Amirabdollahian, and K. Dautenhahn. Would you trust a (faulty) robot?: Effects of error, task type and personality on human-robot cooperation and trust. In Proc. HRI '15, pages 141--148, New York, NY, USA, ACM, 2015.
[30]
A. Savidis and C. Stephanidis. Unified user interface design: designing universally accessible interactions. Interacting with computers, 16(2):243--270, 2004.
[31]
D. Seidel, N. Crilly, F. E. Matthews, C. Jagger, C. Brayne, and P. J. Clarkson. Patterns of functional loss among older people: a prospective analysis. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2009.
[32]
K.-L. Skillen, L. Chen, C. D. Nugent, M. P. Donnelly, W. Burns, and I. Solheim. Ontological user modelling and semantic rule-based reasoning for personalisation of help-on-demand services in pervasive environments. Future Generation Computer Systems, 2013.
[33]
Y. Sugiura, A. Withana, T. Shinohara, M. Ogata, D. Sakamoto, M. Inami, and T. Igarashi. Cooky: A cooperative cooking robot system. In SIGGRAPH Asia 2011, pages 17:1--17:1, NY, USA, ACM, 2011.
[34]
K. M. Tsui, J. M. Dalphond, D. J. Brooks, M. S. Medvedev, E. McCann, J. Allspaw, D. Kontak, and H. A. Yanco. Accessible human-robot interaction for telepresence robots: A case study. Paladyn, Journal of Behavioral Robotics, 6(1):2081--4836, January 2015.
[35]
G. C. Vanderheiden, J. Treviranus, M. Gemou, E. Bekiaris, K. Markus, C. Clark, and A. Basman. The evolving global public inclusive infrastructure (gpii). Proc. UAHCI 2013, pages 107--116. Springer, 2013.

Cited By

View all

Index Terms

  1. Position paper: accessible human-robot interaction (AHRI)

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    PETRA '15: Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments
    July 2015
    526 pages
    ISBN:9781450334525
    DOI:10.1145/2769493
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    • NSF: National Science Foundation
    • University of Texas at Austin: University of Texas at Austin
    • Univ. of Piraeus: University of Piraeus
    • NCRS: Demokritos National Center for Scientific Research
    • Ionian: Ionian University, GREECE

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 July 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. accessisibility
    2. human-robot interaction
    3. survey
    4. universal design

    Qualifiers

    • Research-article

    Conference

    PETRA '15
    Sponsor:
    • NSF
    • University of Texas at Austin
    • Univ. of Piraeus
    • NCRS
    • Ionian

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)17
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 29 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media