skip to main content
research-article

An implicit viscosity formulation for SPH fluids

Published: 27 July 2015 Publication History

Abstract

We present a novel implicit formulation for highly viscous fluids simulated with Smoothed Particle Hydrodynamics SPH. Compared to explicit methods, our formulation is significantly more efficient and handles a larger range of viscosities. Differing from existing implicit formulations, our approach reconstructs the velocity field from a target velocity gradient. This gradient encodes a desired shear-rate damping and preserves the velocity divergence that is introduced by the SPH pressure solver to counteract density deviations. The target gradient ensures that pressure and viscosity computation do not interfere. Therefore, only one pressure projection step is required, which is in contrast to state-of-the-art implicit Eulerian formulations. While our model differs from true viscosity in that vorticity diffusion is not encoded in the target gradient, it nevertheless captures many of the qualitative behaviors of viscous liquids. Our formulation can easily be incorporated into complex scenarios with one- and two-way coupled solids and multiple fluid phases with different densities and viscosities.

Supplementary Material

ZIP File (a114-peer.zip)
Supplemental files
MP4 File (a114.mp4)

References

[1]
Akinci, G., Ihmsen, M., Akinci, N., and Teschner, M. 2012. Parallel surface reconstruction for particle-based fluids. Computer Graphics Forum 31, 6, 1797--1809.
[2]
Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., and Teschner, M. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics (TOG) 31, 4, 62.
[3]
Akinci, N., Akinci, G., and Teschner, M. 2013. Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. 32, 6 (Nov.), 182:1--182:8.
[4]
Batty, C., and Bridson, R. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on computer animation, Eurographics Association, 219--228.
[5]
Batty, C., and Houston, B. 2011. A simple finite volume method for adaptive viscous liquids. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, 111--118.
[6]
Batty, C., Uribe, A., Audoly, B., and Grinspun, E. 2012. Discrete viscous sheets. ACM Transactions on Graphics (TOG) 31, 4, 113.
[7]
Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 209--217.
[8]
Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated SPH for deformable solids. In Proceedings of the Fifth Eurographics conference on Natural Phenomena, Eurographics Association, 27--34.
[9]
Bender, J., Koschier, D., Charrier, P., and Weber, D. 2014. Position-based simulation of continuous materials. Computers & Graphics 44, 0, 1--10.
[10]
Bender, J., Müller, M., Otaduy, M. A., Teschner, M., and Macklin, M. 2014. A survey on position-based simulation methods in computer graphics. Computer Graphics Forum 33, 6, 228--251.
[11]
Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete viscous threads. ACM Transactions on Graphics (TOG) 29, 4, 116.
[12]
Carlson, M., Mucha, P. J., Van Horn III, R. B., and Turk, G. 2002. Melting and flowing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, 167--174.
[13]
Chang, Y., Bao, K., Liu, Y., Zhu, J., and Wu, E. 2009. A particle-based method for viscoelastic fluids animation. In Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, ACM, 111--117.
[14]
Chang, Y., Bao, K., Zhu, J., and Wu, E. 2011. High viscosity fluid simulation using particle-based method. In VR Innovation (ISVRI), 2011 IEEE International Symposium on, IEEE, 199--205.
[15]
Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, 219--228.
[16]
Dagenais, F., Gagnon, J., and Paquette, E. 2012. A prediction-correction approach for stable SPH fluid simulation from liquid to rigid. Proceedings of the Computer Graphics International 2012.
[17]
de Souza Andrade, L. F., Sandim, M., Petronetto, F., Pagliosa, P. A., and Paiva, A. 2014. SPH fluids for viscous jet buckling. In 27th SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2014, SBC, 65--72.
[18]
Desbrun, M., and Gascuel, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation '96, Springer-Verlag, Eurographics, 61--76.
[19]
Fält, H., and Roble, D. 2003. Fluids with extreme viscosity. In ACM SIGGRAPH 2003 Sketches & Applications, ACM, 1--1.
[20]
Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical models and image processing 58, 5, 471--483.
[21]
Gerszewski, D., Bhattacharya, H., and Bargteil, A. W. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, 133--138.
[22]
Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Transactions on Graphics (TOG) 23, 3, 463--468.
[23]
Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Transactions on Graphics (TOG) 24, 3, 915--920.
[24]
Ihmsen, M., Akinci, N., Gissler, M., and Teschner, M. 2010. Boundary handling and adaptive time-stepping for PCISPH. In Proceedings VRIPHYS, VRIPHYS, 79--88.
[25]
Ihmsen, M., Akinci, N., Becker, M., and Teschner, M. 2011. A parallel SPH implementation on multi-core CPUs. Computer Graphics Forum 30, 1, 99--112.
[26]
Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M. 2014. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (Mar.), 426--435.
[27]
Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. 2014. SPH fluids in computer graphics. In Eurographics 2014-State of the Art Reports, The Eurographics Association, 21--42.
[28]
Ju, T., Losasso, F., Schaefer, S., and Warren, J. 2002. Dual contouring of hermite data. ACM Transactions on Graphics (TOG) 21, 3, 339--346.
[29]
Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In Point-Based Graphics, 2005. Eurographics/ IEEE VGTC Symposium Proceedings, IEEE, 125--148.
[30]
Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Transactions on Graphics (TOG) 25, 3, 812--819.
[31]
Macklin, M., and Müller, M. 2013. Position based fluids. ACM Transactions on Graphics (TOG) 32, 4, 104.
[32]
Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y. 2014. Unified particle physics for real-time applications. ACM Transactions on Graphics (TOG) 33, 4, 104.
[33]
Miller, G., and Pearce, A. 1989. Globular dynamics: A connected particle system for animating viscous fluids. Computers & Graphics 13, 3, 305--309.
[34]
Monaghan, J. 1989. On the problem of penetration in particle methods. Journal of Computational physics 82, 1, 1--15.
[35]
Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics 30, 543--574.
[36]
Monaghan, J. J. 2005. Smoothed particle hydrodynamics. Reports on progress in physics 68, 8, 1703.
[37]
Mootz, E., 2014. emPolygonizer5. http://www.mootzoid.com/.
[38]
Morris, J. P., FOX, P. J., and Zhu, Y. 1997. Modeling low reynolds number incompressible flows using SPH. Journal of computational physics 136, 1, 214--226.
[39]
Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 154--159.
[40]
Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 141--151.
[41]
Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, SIGGRAPH '05, ACM, 471--478.
[42]
Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, 237--244.
[43]
Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. 2006. Particle-based non-Newtonian fluid animation for melting objects. In Computer Graphics and Image Processing, 2006. SIBGRAPI'06. 19th Brazilian Symposium on, IEEE, 78--85.
[44]
Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. 2009. Particle-based viscoplastic fluid/solid simulation. Computer-Aided Design 41, 4, 306--314.
[45]
Rafiee, A., Manzari, M., and Hosseini, M. 2007. An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows. International Journal of Non-Linear Mechanics 42, 10, 1210--1223.
[46]
Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 193--202.
[47]
Ren, B., Li, C., Yan, X., Lin, M. C., Bonet, J., and Hu, S.-M. 2014. Multiple-fluid SPH simulation using a mixture model. ACM Transactions on Graphics (TOG) 33, 5, 171.
[48]
Rivers, A. R., and James, D. L. 2007. Fastlsm: Fast lattice shape matching for robust real-time deformation. In ACM SIGGRAPH 2007 Papers, ACM, New York, NY, USA, SIGGRAPH '07, ACM.
[49]
Schechter, H., and Bridson, R. 2012. Ghost SPH for animating water. ACM Transactions on Graphics (TOG) 31, 4, 61.
[50]
Side Effects Software, 2013. Houdini. http://www.sidefx.com/.
[51]
Solenthaler, B., and Pajarola, R. 2008. Density contrast SPH interfaces. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on computer animation, Eurographics Association, 211--218.
[52]
Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible SPH. ACM Transactions on Graphics (TOG) 28, 3, 40.
[53]
Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid--solid interactions. Computer Animation and Virtual Worlds 18, 1, 69--82.
[54]
Stam, J. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 121--128.
[55]
Steele, K., Cline, D., Egbert, P. K., and Dinerstein, J. 2004. Modeling and rendering viscous liquids. Computer Animation and Virtual Worlds 15, 3--4, 183--192.
[56]
Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Transactions on Graphics (TOG) 32, 4, 102.
[57]
Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. 2014. Augmented MPM for phase-change and varied materials. ACM Transactions on Graphics (TOG) 33, 4, 138.
[58]
Stora, D., Agliati, P.-O., Cani, M.-P., Neyret, F., Gascuel, J.-D., et al. 1999. Animating lava flows. In Graphics Interface (GI'99) Proceedings, GI, 203--210.
[59]
Takahashi, T., Nishita, T., and Fujishiro, I. 2014. Fast simulation of viscous fluids with elasticity and thermal conductivity using position-based dynamics. Computers & Graphics 43, 0, 21--30.
[60]
Takahashi, T., Dobashi, Y., Fujishiro, I., Nishita, T., and Lin, M. C. 2015. Implicit formulation for SPH-based viscous fluids. Computer Graphics Forum 34, 2.
[61]
Takamatsu, K., and Kanai, T. 2011. A fast and practical method for animating particle-based viscoelastic fluids. International Journal of Virtual Reality 10, 1, 29.
[62]
Terzopoulos, D., Platt, J., and Fleischer, K. 1991. Heating and melting deformable models. The Journal of Visualization and Computer Animation 2, 2, 68--73.
[63]
Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Transactions on Graphics (TOG) 27, 3, 47.
[64]
Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Transactions on Graphics (TOG) 24, 3, 965--972.

Cited By

View all

Index Terms

  1. An implicit viscosity formulation for SPH fluids

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 34, Issue 4
    August 2015
    1307 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2809654
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 July 2015
    Published in TOG Volume 34, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. fluid simulation
    2. physically-based animation
    3. smoothed particle hydrodynamics
    4. viscosity

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)65
    • Downloads (Last 6 weeks)7
    Reflects downloads up to 26 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media