skip to main content
research-article

NautiLOD: A Formal Language for the Web of Data Graph

Published: 23 January 2015 Publication History

Abstract

The Web of Linked Data is a huge graph of distributed and interlinked datasources fueled by structured information. This new environment calls for formal languages and tools to automatize navigation across datasources (nodes in such graph) and enable semantic-aware and Web-scale search mechanisms. In this article we introduce a declarative navigational language for the Web of Linked Data graph called NautiLOD. NautiLOD enables one to specify datasources via the intertwining of navigation and querying capabilities. It also features a mechanism to specify actions (e.g., send notification messages) that obtain their parameters from datasources reached during the navigation. We provide a formalization of the NautiLOD semantics, which captures both nodes and fragments of the Web of Linked Data. We present algorithms to implement such semantics and study their computational complexity. We discuss an implementation of the features of NautiLOD in a tool called swget, which exploits current Web technologies and protocols. We report on the evaluation of swget and its comparison with related work. Finally, we show the usefulness of capturing Web fragments by providing examples in different knowledge domains.

References

[1]
S. Abiteboul, O. Benjellourn, I. Manolescu, T. Milo, and R. Weber. 2002. Active XML: Peer-to-peer data and web services integration. In Proceedings of the 28th International Conference on Very Large Data Bases. VLDB Endowment, 1087--1090.
[2]
S. Abiteboul and V. Vianu. 1997. Queries and computation on the web. In Proceedings of the International Conference on Database Theory, Vol. 1186. 262--275.
[3]
K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. 2010. Describing Linked Datasets with the voiD Vocabulary. Retrieved from http://www.w3.org/2001/sw/interest/void/.
[4]
F. Alkhateeb, J.-F. Baget, and J. Euzenat. 2009. Extending SPARQL with regular wxpression patterns (for querying RDFsparq). J. Web Semantics 7, 2 (2009), 57--73.
[5]
R. Angles and C. Gutierrez. 2008. Survey of graph database models. Comput. Surveys 40, 1 (Feb. 2008), 1--39.
[6]
S. Araujo and D. Schwabe. 2009. Explorator: A tool for exploring RDF data through direct manipulation. In Linked Data on the Web (CEUR Workshop Proceedings), Vol. 538.
[7]
F. Baader and T. Nipkow. 1999. Term Rewriting and All That. Cambridge University Press.
[8]
P. Barceló, L. Libkin, A. W Lin, and P. T Wood. 2012. Expressive languages for path queries over graph-structured data. ACM Trans. Database Syst. (TODS) 37, 4 (2012), 31.
[9]
T. Berners-Lee. 1998. What the Semantic Web Can Represent. Retrieved from http://www.w3.org/DesignIssues/RDFnot.html.
[10]
T. Berners-Lee. 2006. Linked Data Design Issues. Retrieved from http://www.w3.org/DesignIssues/LinkedData.html.
[11]
T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets. 2006. Tabulator: Exploring and analyzing linked data on the semantic web. In Proceedings of the International Semantic Web User Interaction Workshop.
[12]
S. Brin and L. Page. 1998. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 1--7 (1998), 107--117.
[13]
J. Clark and S. DeRose. 1999. XML path language (XPath) version 1.0. W3C Recommendation 16 November 1999. Retrieved from http://www.w3.org/TR/xpath/.
[14]
M. Cohen and D. Schwabe. 2012. Support for reusable explorations of linked data in the semantic web. In SeCO Book, Stefano Ceri and Marco Brambilla (Eds.). Lecture Notes in Computer Science, Vol. 7538. Springer, 176--190.
[15]
M. d’Aquin and E. Motta. 2011. Watson, more than a Semantic Web Search Engine. Semantic Web 2, 1 (2011), 55--63.
[16]
L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. C. Doshi, and J. Sachs. 2004. Swoogle: A search and metadata engine for the semantic web. In Proceedings of the ACM International Conference on Information and Knowledge Management. ACM, 652--659.
[17]
V. Fionda, C. Gutierrez, and G. Pirrò. 2012. Semantic navigation on the web of data: Specification of routes, web fragments and actions. In International World Wide Web Conference. ACM Press, New York, NY, 281--290.
[18]
V. Fionda, C. Gutierrez, and G. Pirrò. 2014a. Knowledge maps of web graphs. In International Conference on Principles of Knowledge Representation and Reasoning (KR). AAAI Press.
[19]
V. Fionda, C. Gutierrez, and G. Pirrò. 2014b. The swget portal: Navigating and acting on the Web of Linked Data. J. Web Semantics 26 (2014), 29--35.
[20]
V. Fionda, G. Pirrò, and C. Gutierrez. 2014c. The map generator tool. In Proceedings of the ISWC 2014 Posters & Demonstrations Track. 81--84.
[21]
D. Florescu, A. Levy, and A. O. Mendelzon. 1998. Database techniques for the World-Wide Web: A survey. SIGMOD Rec. 27, 3 (1998), 59--74.
[22]
Y. Gil and P. Groth. 2011. Using provenance in the semantic web. J. Web Semantics 9, 2 (2011), 147--148.
[23]
P. Haase, T. Mathäb, and M. Ziller. 2010. An evaluation of approaches to federated query processing over linked data. In I-SEMANTICS.
[24]
S. Harris and A. Seaborne. 2013. SPARQL 1.1 Query Language, W3C Recommendation. (2013). http://www.w3.org/TR/sparql11-query/.
[25]
A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, and J. Umbrich. 2010. Data summaries for on-demand queries over linked data. In Proceedings of the International World Wide Web Conference. ACM, 411--420.
[26]
O. Hartig. 2011. Zero-knowledge query planning for an iterator implementation of link traversal based query execution. In Proceedings of the Extended Semantic Web Conference. 154--169.
[27]
O. Hartig, C. Bizer, and J.-C. Freytag. 2009. Executing SPARQL queries over the web of linked data. In Proceedings of the International Semantic Web Conference. 293--309.
[28]
O. Hartig and M. T. Ozsu. 2014. Reachable subwebs for traversal-based query execution. In Proceedings of the International World Wide Web Conference (Companion Volume). 541--546.
[29]
T. Heath and C. Bizer. 2011. Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool.
[30]
M. Hildebrand, J. van Ossenbruggen, and L. Hardman. 2006. Facet: A browser for heterogeneous semantic web repositories. In Proceedings of the International Semantic Web Conference. 272--285.
[31]
J. E. Hopcroft, R. Motwani, and J. D. Ullman. 2000. Introduction to Automata Theory, Languages and Computability (2nd ed.). Addison-Wesley Longman, Boston, MA.
[32]
K. Hose, R. Schenkel, M. Theobald, and G. Weikum. 2011. Database foundations for scalable RDF processing. In Reasoning Web. Lecture Notes in Computer Science, Vol. 6848. 202--249.
[33]
R. Isele, A. Harth, J. Umbrich, and C. Bizer. 2010. LDspider: An open-source crawling framework for the Web of Linked Data. In Proceedings of the International Semantic Web Conference.
[34]
G. Klyne, J. J. Carroll, and B. McBride. 2004. Resource Description Framework (RDF): Concepts and Abstract Syntax. Retrieved from http://www.w3.org/TR/rdf-concepts.
[35]
K. Kochut and M. Janik. 2007. SPARQLeR: Extended SPARQL for semantic association discovery. In Proceedings of the European Semantic Web Conference. 145--159.
[36]
A. O. Mendelzon, G. A. Mihaila, and T. Milo. 1997. Querying the World Wide Web. Int. J. Digital Libraries 1, 1 (1997), 54--67.
[37]
E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn, and G. Tummarello. 2008. Sindice.com: A document-oriented lookup index for open linked data. Int. J. Metadata Semant. Ontol. 3, 1 (2008).
[38]
E. Oren, R. Delbru, and S. Decker. 2006. Extending faceted navigation for RDF data. In Proceedings of the International Semantic Web Conference. 559--572.
[39]
G. Papamarkos, A. Poulovassilis, and P. T. Wood. 2004. RDFTL: An event-condition-action language for RDF. In Proceedings of the 3rd International Workshop on Web Dynamics.
[40]
J. Pérez, M. Arenas, and C. Gutierrez. 2009. Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34, 3 (2009).
[41]
J. Pérez, M. Arenas, and C. Gutierrez. 2010. nSPARQL: A navigational language for RDF. J. Web Semantics 8, 4 (2010), 255--270.
[42]
B. Quilitz and U. Leser. 2008. Querying distributed RDF data sources with SPARQL. In Proceedings of the European Semantic Web Conference. 524--538.
[43]
N. A. Rakhmawati, J. Umbrich, M. Karnstedt, A. Hasnain, and M. Hausenblas. 2013. Querying over federated SPARQL endpoints—A state of the art survey. CoRR (2013).
[44]
S. Schaffert, C. Bauer, T. Kurz, F. Dorschel, D. Glachs, and M. Fernandez. 2012. The linked media framework: Integrating and interlinking enterprise media content and data. In I-SEMANTICS. 25--32.
[45]
M. Schmachtenberg, H. Paulheim, and C. Bizer. 2014. Adoption of linked data best practices in different topical domains. In Proceedings of the International Semantic Web Conference.
[46]
A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. 2011. FedX: Optimization techniques for federated query processing on linked data. In Proceedings of the International Semantic Web Conference. 601--616.
[47]
S. Stadtmüller, S. Speiser, A. Harth, and R. Studer. 2013. Data-fu: A language and an interpreter for interaction with read/write linked data. In Proceedings of the 22nd International Conference on World Wide Web. 1225--1236.
[48]
J. Umbrich, A. Hogan, A. Polleres, and S. Decker. 2014. Link traversal querying for a diverse web of data. Semantic Web—Interoperability, Usability, Applicability (2014).
[49]
P. Wadler. 1999. Two semantics for XPath. Retrieved from http://www.cs.bell-labs.com/who/wadler/topics/xml.html.
[50]
J. Weaver and P. Tarjan. 2013. Facebook linked data via the graph API. Semantic Web 4, 3 (2013), 245--250.
[51]
P. T. Wood. 2012. Query languages for graph databases. SIGMOD Record 41, 1 (2012), 50--60.
[52]
M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, V. Tresp, and G. Weikum. 2012. Deep answers for naturally asked questions on the web of data. In Proceedings of the International World Wide Web Conference (Companion Volume). ACM, 445--449.
[53]
H. Zauner, B. Linse, T. Furche, and F. Bry. 2010. A RPL through RDF: Expressive navigation in RDF graphs. In Web Reasoning and Rule Systems. 251--257.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on the Web
ACM Transactions on the Web  Volume 9, Issue 1
January 2015
178 pages
ISSN:1559-1131
EISSN:1559-114X
DOI:10.1145/2726021
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 January 2015
Accepted: 01 October 2014
Revised: 01 August 2014
Received: 01 April 2014
Published in TWEB Volume 9, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Navigation
  2. Web of data
  3. graph languages
  4. linked data
  5. semantic Web

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Calabria region
  • European Commission
  • European Social Fund
  • Millenium Nucleus CIWS, NC120004
  • projects FONDECYT No. 1110287
  • EU Framework Programme for Research and Innovation

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media