skip to main content
10.1145/2661806.2661807acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
introduction
Free access

AVEC 2014: 3D Dimensional Affect and Depression Recognition Challenge

Published: 07 November 2014 Publication History

Abstract

Mood disorders are inherently related to emotion. In particular, the behaviour of people suffering from mood disorders such as unipolar depression shows a strong temporal correlation with the affective dimensions valence, arousal and dominance. In addition to structured self-report questionnaires, psychologists and psychiatrists use in their evaluation of a patient's level of depression the observation of facial expressions and vocal cues. It is in this context that we present the fourth Audio-Visual Emotion recognition Challenge (AVEC 2014). This edition of the challenge uses a subset of the tasks used in a previous challenge, allowing for more focussed studies. In addition, labels for a third dimension (Dominance) have been added and the number of annotators per clip has been increased to a minimum of three, with most clips annotated by 5. The challenge has two goals logically organised as sub-challenges: the first is to predict the continuous values of the affective dimensions valence, arousal and dominance at each moment in time. The second is to predict the value of a single self-reported severity of depression indicator for each recording in the dataset. This paper presents the challenge guidelines, the common data used, and the performance of the baseline system on the two tasks.

References

[1]
T. Almaev and M. Valstar. Local gabor binary patterns from three orthogonal planes for automatic facial expression recognition. In Proc. Affective Computing and Intelligent Interaction, 2013.
[2]
T. R. Almaev, A. Yüce, A. Ghitulescu, and M. F. Valstar. Distribution-based iterative pairwise classification of emotions in the wild using lgbp-top. In Proc. Int'l Conf. Multimodal Interaction, ICMI '13, pages 535--542, New York, NY, USA, 2013. ACM.
[3]
M. R. Bagby, A. G. Ryder, D. R. Schuller, and M. B. Marshall. The hamilton depression rating scale: Has the gold standard become a lead weight? American Journal of Psychiatry, 161:2163--2177, 2004.
[4]
A. Beck, R. Steer, R. Ball, and W. Ranieri. Comparison of beck depression inventories -ia and -ii in psychiatric outpatients. Journal of Personality Assessment, 67(3):588--97, December 1996.
[5]
J. F. Cohn, S. Kreuz, I. Matthews, Y. Yang, M. H. Nguyen, M. Tejera Padilla, and et al. Detecting depression from facial actions and vocal prosody. In Proc. Affective Computing and Intelligent Interaction, pages 1--7, 2009.
[6]
R. Cowie, E. Douglas-Cowie, S. Savvidou, E. McMahon, M. Sawey, and M. Schröder. Feeltrace: An instrument for recording perceived emotion in real time. In Proc.\ ISCA Workshop on Speech and Emotion, pages 19--24, Belfast, UK, 2000.
[7]
F. Eyben, F. Weninger, S. Squartini, and B. Schuller. Real-life voice activity detection with lstm recurrent neural networks and an application to hollywood movies. In Proc.\ of ICASSP, Vancouver, Canada. IEEE, 2013. to appear.
[8]
F. Eyben, M. Wöllmer, and B. Schuller. openEAR - Introducing the Munich Open-Source Emotion and Affect Recognition Toolkit. In Proc.\ ACII, pages 576--581, Amsterdam, The Netherlands, 2009.
[9]
F. Eyben, M. Wöllmer, and B. Schuller. openSMILE -- The Munich Versatile and Fast Open-Source Audio Feature Extractor. In Proc.\ ACM Multimedia (MM), pages 1459--1462, Florence, Italy, 2010.
[10]
M. First, R. Spitzer, M. Gibbon, and J. Williams. Structured Clinical Interview for DSM-IV Axis I Disorders SCID-I: Clinician Version, Administration Booklet. SCID-I: Clinician Version. American Psychiatric Press, 1997.
[11]
J. Fontaine, S. K.R., E. Roesch, and P. Ellsworth. The world of emotions is not two-dimensional. Psychological science, 18(2):1050 -- 1057, 2007.
[12]
J. M. Girard, J. F. Cohn, M. H. Mahoor, S. Mavadati, and D. Rosenwald. Social risk and depression: Evidence from manual and automatic facial expression analysis. In IEEE International Conference on Automatic Face and Gesture Recognition, 2013.
[13]
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1):10--18, Nov. 2009.
[14]
M. Hamilton. Development of a rating scale for primary depressive illness. British Journal of Social and Clinical Psycology, 8:278--296, 1967.
[15]
J. Hamm, Kohler, C. G., Gur, R. C., and R. Verma. Automated facial action coding system for dynamic analysis of facial expressions in neuropsychiatric disorders. Journal of Neuroscience Methods, 200(2):237--256, 2011.
[16]
Health & Consumer Protection Directorate General. Improving the mental health of the population: Towards a strategy on mental health for the european union. Technical report, European Union, 2005.
[17]
Health & Consumer Protection Directorate General. Mental health in the eu. Technical report, European Union, 2008.
[18]
M. K\"achele, M. Glodek, D. Zharkov, S. Meudt, and F. Schwenker. Fusion of audio-visual features using hierarchical classifier systems for the recognition of affective states and the state of depression. In M. De Marsico, A. Tabbone, and A. Fred, editors, Proc. Int'l Conf. Pattern Recognition Applications and Methods (ICPRAM), pages 671--678. SciTePress, 2014.
[19]
S. Maji, A. C. Berg, and J. Malik. Classification using intersection kernel support vector machines is efficient. 2013 IEEE Conference on Computer Vision and Pattern Recognition, 0:1--8, 2008.
[20]
H. Meng, D. Huang, H. Wang, H. Yang, M. AI-Shuraifi, and Y. Wang. Depression recognition based on dynamic facial and vocal expression features using partial least square regression. In Proc. Int'l Workshop Audio/Visual Emotion Challenge, AVEC '13, pages 21--30, New York, NY, USA, 2013. ACM.
[21]
M. Nicolaou, V. Pavlovic, and M. Pantic. Dynamic probabilistic cca for analysis of affective behaviour and fusion of continuous annotations. Pattern Analysis and Machine Intelligence, IEEE Transactions on, PP(99):1--1, 2014.
[22]
R. Picard. Affective Computing. MIT Press, 1997.
[23]
S. Scherer, G. Stratou, J. Gratch, J. Boberg, M. Mahmoud, A. S. Rizzo, and L.-P. Morency. Automatic behavior descriptors for psychological disorder analysis. In Proc.\ IEEE Int.\ Conf.\ on Automatic Face and Gesture Recognition, 2013.
[24]
B. Schuller, S. Steidl, and A. Batliner. The INTERSPEECH 2009 Emotion Challenge. In Proc.\ INTERSPEECH 2009, pages 312--315, Brighton, UK, 2009.
[25]
B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers, C. Müller, and S. Narayanan. The INTERSPEECH 2010 Paralinguistic Challenge. In Proc.\ INTERSPEECH 2010, pages 2794--2797, Makuhari, Japan, 2010.
[26]
M. Valstar. Automatic behaviour understanding in medicine. In Proceedings ACM Int'l Conf. Multimodal Interaction, 2014.
[27]
M. Valstar, B. Schuller, K. Smith, F. Eyben, B. Jiang, S. Bilakhia, S. Schnieder, R. Cowie, and M. Pantic. Avec 2013 - the continuous audio / visual emotion and depression recognition challenge. In Proc. 3rd ACM international workshop on Audio/visual emotion challenge, pages 3--10, 2013.
[28]
A. Vinciarelli, M. Pantic, D. Heylen, C. Pelachaud, I. Poggi, F. D'ericco, and M. Schroeder. Bridging the gap between social animal and unsocial machine: A survey of social signal processing. IEEE Trans. Affective Computing, 3:69--87, April 2012. Issue 1.
[29]
P. Wang, F. Barrett, E. Martin, M. Milonova, R. E. Gur, R. C. Gur, C. Kohler, and et al. Automated video-based facial expression analysis of neuropsychiatric disorders. Journal of Neuroscience Methods, 168(1):224 -- 238, 2008.
[30]
J. R. Williamson, T. F. Quatieri, B. S. Helfer, R. Horwitz, B. Yu, and D. D. Mehta. Vocal biomarkers of depression based on motor incoordination. In Proceedings of the 3rd ACM International Workshop on Audio/Visual Emotion Challenge, AVEC '13, pages 41--48, New York, NY, USA, 2013. ACM.
[31]
Y. Yang, C. Fairbairn, and J. Cohn. Detecting depression severity from intra- and interpersonal vocal prosody. IEEE Transactions on Affective Computing, 4, 2013.
[32]
M. Zimmerman, I. Chelminski, and M. Posternak. A review of studies of the hamilton depression rating scale in healthy controls: Implications for the definition of remission in treatment studies of depression. Journal of Nervous & Mental Disease, 192(9):595--601, 2004.

Cited By

View all

Index Terms

  1. AVEC 2014: 3D Dimensional Affect and Depression Recognition Challenge

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    AVEC '14: Proceedings of the 4th International Workshop on Audio/Visual Emotion Challenge
    November 2014
    110 pages
    ISBN:9781450331197
    DOI:10.1145/2661806
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 November 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. affective computing
    2. challenge
    3. emotion recognition
    4. facial expression
    5. speech

    Qualifiers

    • Introduction

    Conference

    MM '14
    Sponsor:
    MM '14: 2014 ACM Multimedia Conference
    November 7, 2014
    Florida, Orlando, USA

    Acceptance Rates

    AVEC '14 Paper Acceptance Rate 8 of 22 submissions, 36%;
    Overall Acceptance Rate 52 of 98 submissions, 53%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)900
    • Downloads (Last 6 weeks)180
    Reflects downloads up to 07 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media