skip to main content
research-article

Local barycentric coordinates

Published: 19 November 2014 Publication History

Abstract

Barycentric coordinates yield a powerful and yet simple paradigm to interpolate data values on polyhedral domains. They represent interior points of the domain as an affine combination of a set of control points, defining an interpolation scheme for any function defined on a set of control points. Numerous barycentric coordinate schemes have been proposed satisfying a large variety of properties. However, they typically define interpolation as a combination of all control points. Thus a local change in the value at a single control point will create a global change by propagation into the whole domain. In this context, we present a family of local barycentric coordinates (LBC), which select for each interior point a small set of control points and satisfy common requirements on barycentric coordinates, such as linearity, non-negativity, and smoothness. LBC are achieved through a convex optimization based on total variation, and provide a compact representation that reduces memory footprint and allows for fast deformations. Our experiments show that LBC provide more local and finer control on shape deformation than previous approaches, and lead to more intuitive deformation results.

Supplementary Material

ZIP File (a188.zip)
Supplemental material.

References

[1]
Ambrosio, L., Fusco, N., and Pallara, D. 2000. Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press.
[2]
Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. 2012. Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning 4, 1, 1--106.
[3]
Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1, 1--122.
[4]
Bresson, X., Laurent, T., Uminsky, D., and Von Brecht, J. 2013. Multiclass total variation clustering. In Advances in Neural Information Processing Systems, 1421--1429.
[5]
Bruckstein, A., Donoho, D., and Elad, M. 2009. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 1, 34--81.
[6]
Chambolle, A., Caselles, V., Cremers, D., Novaga, M., and Pock, T. 2010. An introduction to total variation for image analysis. Theoretical Foundations and Numerical Methods for Sparse Recovery 9, 263--340.
[7]
Chan, T. F., and Vese, L. A. 2001. Active contours without edges. IEEE Trans. Image Process. 10, 2, 266--277.
[8]
Chan, T., Esedoglu, S., Park, F., and Yip, A. 2006. Total variation image restoration: Overview and recent developments. In Handbook of Mathematical Models in Computer Vision, N. Paragios, Y. Chen, and O. Faugeras, Eds. Springer US, 17--31.
[9]
Chan, R., Chan, T., and Yip, A. 2011. Numerical methods and applications in total variation image restoration. In Handbook of Mathematical Methods in Imaging, O. Scherzer, Ed. Springer New York, 1059--1094.
[10]
Chartrand, R. 2007. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14, 10, 707--710.
[11]
Combettes, P. L., and Pesquet, J.-C. 2011. Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, Eds. Springer, 185--212.
[12]
Crane, K., Weischedel, C., and Wardetzky, M. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5, 152:1--152:11.
[13]
Dasgupta, G., and Wachspress, E. L. 2008. Basis functions for concave polygons. Comput. Math. Appl. 56, 2, 459--468.
[14]
Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21, 4, 209--218.
[15]
Elsey, M., and Esedoglu, S. 2009. Analogue of the total variation denoising model in the context of geometry processing. Multiscale Modeling & Simulation 7, 4, 1549--1573.
[16]
Evans, L. C., and Gariepy, R. F. 1992. Measure Theory and Fine Properties of Functions. CRC Press.
[17]
Farbman, Z., Hoffer, G., Lipman, Y., Cohen-Or, D., and Lischinski, D. 2009. Coordinates for instant image cloning. ACM Trans. Graph. 28, 3, 67:1--67:9.
[18]
Floater, M. S. 2003. Mean value coordinates. Comput. Aided Geom. Des. 20, 1, 19--27.
[19]
Garcí A, F. G., Paradinas, T., Coll, N., and Patow, G. 2013. *Cages: A multilevel, multi-cage-based system for mesh deformation. ACM Trans. Graph. 32, 3, 24:1--24:13.
[20]
Ge, D., Jiang, X., and Ye, Y. 2011. A note on the complexity of Lp minimization. Mathematical Programming 129, 2, 285--299.
[21]
Goldstein, T., and Osher, S. 2009. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 2, 323--343.
[22]
Goldstein, T., Bresson, X., and Osher, S. 2010. Geometric applications of the split Bregman method: Segmentation and surface reconstruction. J. Sci. Comput. 45, 1-3, 272--293.
[23]
Grasmair, M., 2010. A coarea formula for anisotropic total variation regularisation. NRN Report No. 103.
[24]
Hiyoshi, H., and Sugihara, K. 2000. Voronoi-based interpolation with higher continuity. In Proc. SoCG, 242--250.
[25]
Hormann, K., and Floater, M. S. 2006. Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25, 4, 1424--1441.
[26]
Hormann, K., and Sukumar, N. 2008. Maximum entropy coordinates for arbitrary polytopes. Comput. Graph. Forum 27, 5, 1513--1520.
[27]
Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78:1--78:8.
[28]
Jacobson, A., Weinkauf, T., and Sorkine, O. 2012. Smooth shape-aware functions with controlled extrema. Comput. Graph. Forum 31, 5, 1577--1586.
[29]
Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26.
[30]
Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3, 561--566.
[31]
Krantz, S. G., and Parks, H. R. 2002. A Primer of Real Analytic Functions, 2nd ed. Birkhäuser.
[32]
Landreneau, E., and Schaefer, S. 2010. Poisson-based weight reduction of animated meshes. Comput. Graph. Forum 29, 6, 1945--1954.
[33]
Lellmann, J., and Schnörr, C. 2011. Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci. 4, 4, 1049--1096.
[34]
Li, X.-Y., and Hu, S.-M. 2013. Poisson coordinates. IEEE Trans. Vis. Comput. Graph. 19, 2, 344--352.
[35]
Li, Z., Levin, D., Deng, Z., Liu, D., and Luo, X. 2010. Cage-free local deformations using green coordinates. Visual Comput. 26, 6-8, 1027--1036.
[36]
Li, X.-Y., Ju, T., and Hu, S.-M. 2013. Cubic mean value coordinates. ACM Trans. Graph. 32, 4, 126:1--126:10.
[37]
Lipman, Y., Kopf, J., Cohen-Or, D., and Levin, D. 2007. GPU-assisted positive mean value coordinates for mesh deformations. In Proc. SGP, 117--123.
[38]
Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Trans. Graph. 27, 3, 78:1--78:10.
[39]
Möbius, A. F. 1827. Der barycentrische Calcul: ein neues Hülfsmittel zur analytischen Behandlung der Geometrie. Barth.
[40]
Osserman, R. 1978. The isoperimetric inequality. Bulletin of the American Mathematical Society 84, 6, 1182--1238.
[41]
Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1, 15--36.
[42]
Rudin, L. I., Osher, S., and Fatemi, E. 1992. Nonlinear total variation based noise removal algorithms. Phys. D 60, 1-4, 259--268.
[43]
Rustamov, R. M. 2011. Multiscale biharmonic kernels. Comput. Graph. Forum 30, 5, 1521--1531.
[44]
Schaefer, S., Ju, T., and Warren, J. 2007. A unified, integral construction for coordinates over closed curves. Comput. Aided Geom. Des. 24, 8--9, 481--493.
[45]
Sibson, R. 1981. A brief description of natural neighbour interpolation. In Interpreting Multivariate Data, V. Barnett, Ed. John Wiley & Sons, 21--36.
[46]
Takayama, K., Sorkine, O., Nealen, A., and Igarashi, T. 2010. Volumetric modeling with diffusion surfaces. ACM Trans. Graph. 29, 6, 180:1--180:8.
[47]
Wan, F. Y. 1995. Introduction to the Calculus of Variations and Its Applications, 2nd ed. Chapman & Hall.
[48]
Weber, O., and Gotsman, C. 2010. Controllable conformal maps for shape deformation and interpolation. ACM Trans. Graph. 29, 4, 78:1--78:11.
[49]
Weber, O., Ben-Chen, M., and Gotsman, C. 2009. Complex barycentric coordinates with applications to planar shape deformation. Comput. Graph. Forum 28, 2, 587--597.
[50]
Weber, O., Ben-Chen, M., Gotsman, C., and Hormann, K. 2011. A complex view of barycentric mappings. Comput. Graph. Forum 30, 5, 1533--1542.
[51]
Weber, O., Poranne, R., and Gotsman, C. 2012. Biharmonic coordinates. Comput. Graph. Forum 31, 8, 2409--2422.
[52]
Weiss, P., Blanc-Fraud, L., and Aubert, G. 2009. Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 3, 2047--2080.
[53]
Wu, C., and Tai, X.-C. 2010. Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3, 3, 300--339.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 6
November 2014
704 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2661229
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 November 2014
Published in TOG Volume 33, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. barycentric coordinates
  2. image warping
  3. locality
  4. shape deformation
  5. smoothness
  6. total variation

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)70
  • Downloads (Last 6 weeks)14
Reflects downloads up to 07 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media