skip to main content
10.1145/2591796.2591886acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Rounding sum-of-squares relaxations

Published: 31 May 2014 Publication History

Abstract

We present a general approach to rounding semidefinite programming relaxations obtained by the Sum-of-Squares method (Lasserre hierarchy). Our approach is based on using the connection between these relaxations and the Sum-of-Squares proof system to transform a combining algorithm---an algorithm that maps a distribution over solutions into a (possibly weaker) solution---into a rounding algorithm that maps a solution of the relaxation to a solution of the original problem.

Supplementary Material

MP4 File (p31-sidebyside.mp4)

References

[1]
A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learning sparsely used overcomplete dictionaries via alternating minimization. arXiv preprint 1310.7991, 2013. http://arxiv.org/abs/1310.7991.
[2]
H.-C. An, R. Kleinberg, and D. B. Shmoys. Improving Christofides' algorithm for the s-t path TSP. In STOC, pages 875--886, 2012.
[3]
S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci., 54(2):317--331, 1997.
[4]
S. Arora, B. Barak, and D. Steurer. Subexponential algorithms for unique games and related problems. In FOCS, pages 563--572, 2010.
[5]
S. Arora, B. Bollobás, L. Lovász, and I. Tourlakis. Proving integrality gaps without knowing the linear program. Theory of Computing, 2(1):19--51, 2006. Preliminary version in FOCS '02.
[6]
S. Arora, R. Ge, and A. Moitra. New algorithms for learning incoherent and overcomplete dictionaries. arXiv preprint 1308.6723, 2013. http://arxiv.org/abs/1308.6273.
[7]
S. Arora, S. Rao, and U. V. Vazirani. Expander flows, geometric embeddings and graph partitioning. In STOC, pages 222--231, 2004.
[8]
B. Barak, F. G. S. L. Brandão, A. W. Harrow, J. A. Kelner, D. Steurer, and Y. Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In STOC, pages 307--326, 2012.
[9]
B. Barak, P. Gopalan, J. Håstad, R. Meka, P. Raghavendra, and D. Steurer. Making the long code shorter. In FOCS, pages 370--379, 2012.
[10]
B. Barak, J. Kelner, and D. Steurer. Iterative rounding for sum-of-squares relaxations. Preliminary version of the current work, unpublished, 2012.
[11]
B. Barak, J. Kelner, and D. Steurer. Rounding sum-of-squares relaxations. arXiv preprint arXiv:1312.6652, 2013. Full version of the current work.
[12]
B. Barak, J. Kelner, and D. Steurer. Dictionary learning via the sum-of-squares method. Manuscript in preparation, 2014.
[13]
B. Barak, P. Raghavendra, and D. Steurer. Rounding semidefinite programming hierarchies via global correlation. In FOCS, pages 472--481. IEEE, 2011.
[14]
S. Benabbas, K. Georgiou, A. Magen, and M. Tulsiani. SDP gaps from pairwise independence. Theory of Computing, 8(1):269--289, 2012.
[15]
A. Bhaskara, M. Charikar, A. Vijayaraghavan, V. Guruswami, and Y. Zhou. Polynomial integrality gaps for strong SDP relaxations of densest k-subgraph. In SODA, pages 388--405, 2012.
[16]
F. G. S. L. Brandão, M. Christandl, and J. Yard. A quasipolynomial-time algorithm for the quantum separability problem. In STOC, pages 343--352, 2011.
[17]
F. G. S. L. Brandão and A. W. Harrow. Quantum de Finetti theorems under local measurements with applications. In STOC, pages 861--870, 2013.
[18]
A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing, 34(3):720--742, 2005. Preliminary version in ICALP '00.
[19]
M. Charikar, K. Makarychev, and Y. Makarychev. Integrality gaps for sherali-adams relaxations. In STOC, pages 283--292, 2009.
[20]
E. Chlamtac and M. Tulsiani. Convex relaxations and integrality gaps, 2010. Chapter in Handbook on Semidefinite, Cone and Polynomial Optimization.
[21]
W. F. de la Vega and C. Kenyon-Mathieu. Linear programming relaxations of maxcut. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 53--61. Society for Industrial and Applied Mathematics, 2007.
[22]
L. Demanet and P. Hand. Recovering the Sparsest Element in a Subspace, Oct. 2013. Arxiv preprint 1310.1654.
[23]
A. C. Doherty and S. Wehner. Convergence of SDP hierarchies for polynomial optimization on the hypersphere. arXiv preprint arXiv:1210.5048, 2012.
[24]
S. O. Gharan, A. Saberi, and M. Singh. A randomized rounding approach to the traveling salesman problem. In FOCS, pages 550--559, 2011.
[25]
M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115--1145, 1995. Preliminary version in STOC '94.
[26]
L.-A. Gottlieb and T. Neylon. Matrix sparsification and the sparse null space problem. In APPROX-RANDOM, pages 205--218, 2010.
[27]
D. Grigoriev. Complexity of Positivstellensatz proofs for the knapsack. Computational Complexity, 10(2):139--154, 2001.
[28]
D. Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity. Theor. Comput. Sci., 259(1-2):613--622, 2001.
[29]
D. Grigoriev and N. Vorobjov. Complexity of Null-and Positivstellensatz proofs. Annals of Pure and Applied Logic, 113(1):153--160, 2001.
[30]
V. Guruswami and A. K. Sinop. Lasserre hierarchy, higher eigenvalues, and approximation schemes for graph partitioning and quadratic integer programming with psd objectives. In FOCS, pages 482--491, 2011.
[31]
A. W. Harrow and A. Montanaro. Testing product states, quantum merlin-arthur games and tensor optimization. J. ACM, 60(1):3, 2013. Preliminary version in FOCS '10.
[32]
M. Kauers, R. O'Donnell, L.-Y. Tan, and Y. Zhou. Hypercontractive inequalities via sos, and the frankl-rödl graph. In SODA, 2014.
[33]
S. Khot. On the power of unique 2-prover 1-round games. In IEEE Conference on Computational Complexity, page 25, 2002.
[34]
S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into ℓ1. In FOCS, pages 53--62, 2005.
[35]
P. Koiran and A. Zouzias. Hidden cliques and the certification of the restricted isometry property. CoRR, abs/1211.0665, 2012.
[36]
J.-L. Krivine. Anneaux préordonnés. Journal d'analyse mathématique, 12(1):307--326, 1964.
[37]
J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3):796--817, 2001.
[38]
M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In Emerging applications of algebraic geometry, pages 157--270. Springer, 2009. Updated version available on the author's homepage at http://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf.
[39]
L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization, 1(2):166--190, 1991.
[40]
Y. Nesterov. Squared functional systems and optimization problems. High performance optimization, 13:405--440, 2000.
[41]
R. O'Donnell and Y. Zhou. Approximability and proof complexity. In SODA, pages 1537--1556, 2013.
[42]
P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, California Institute of Technology, 2000.
[43]
P. Raghavendra. Complexity of constraint satisfaction problems: Exact and approximate, 2010. Talk at the Institute for Advanced Study, video available on http://video.ias.edu/csdm/complexityconstraint.
[44]
P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture. In STOC, pages 755--764, 2010.
[45]
P. Raghavendra, D. Steurer, and P. Tetali. Approximations for the isoperimetric and spectral profile of graphs and related parameters. In STOC, pages 631--640, 2010.
[46]
P. Raghavendra, D. Steurer, and M. Tulsiani. Reductions between expansion problems. In IEEE Conference on Computational Complexity, pages 64--73, 2012.
[47]
G. Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In FOCS, pages 593--602, 2008.
[48]
H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics, 3(3):411--430, 1990.
[49]
N. Shor. An approach to obtaining global extremums in polynomial mathematical programming problems. Cybernetics and Systems Analysis, 23(5):695--700, 1987.
[50]
D. A. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictionaries. Journal of Machine Learning Research - Proceedings Track, 23:37.1--37.18, 2012.
[51]
G. Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Mathematische Annalen, 207(2):87--97, 1974.
[52]
M. Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In STOC, pages 303--312, 2009.
[53]
M. Zibulevsky and B. A. Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary. Neural computation, 13(4):863--882, 2001.

Cited By

View all

Index Terms

  1. Rounding sum-of-squares relaxations

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    STOC '14: Proceedings of the forty-sixth annual ACM symposium on Theory of computing
    May 2014
    984 pages
    ISBN:9781450327107
    DOI:10.1145/2591796
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 31 May 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article

    Conference

    STOC '14
    Sponsor:
    STOC '14: Symposium on Theory of Computing
    May 31 - June 3, 2014
    New York, New York

    Acceptance Rates

    STOC '14 Paper Acceptance Rate 91 of 319 submissions, 29%;
    Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

    Upcoming Conference

    STOC '25
    57th Annual ACM Symposium on Theory of Computing (STOC 2025)
    June 23 - 27, 2025
    Prague , Czech Republic

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)23
    • Downloads (Last 6 weeks)6
    Reflects downloads up to 08 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media