skip to main content
article
Free access

Two heads are better than two tapes

Published: 01 March 1997 Publication History

Abstract

We show that a Turing machine with two single-head one-dimensional tapes cannot recognize the set.

References

[1]
AANDERAA, S. 0. 1974. 1974. On k-tape versus (k - 1)-tape real time computation. In Complexity of Computation (SIAM-AMS Proceedings 7) R. M. Karp. ed. American Mathematical Society, Providence, R. I., pp. 75-96.
[2]
BE#V#.#, J. 1965. Real-time and complexity problems in automata theory. Kyberntika 1, 6, 475- 497.
[3]
BENNISON, g. L. 1974. Saving tapes in the simulation of multihead Turing machines. SIGACT News 6, 2 (Apr.), 23-26.
[4]
CHUNG, F. R. K., TARJAN, R. E., PAUL, W. J., AND REISCHUK, R. 1985. Coding strings by pairs of strings. SIAM J. Disc. Math. 6, 3 (July), 445-461.
[5]
DURIS, P., GALIL, Z., PAUL, W. J., AND REISCHUK, R. 1984. Two nonlinear lower bounds for on-line computations. Inf. Cont. 60, 1-3 (Jan.-Mar.), 1-11.
[6]
FISCHER, P. C., MEYER, A. R., AND ROSENBERG, A.L. 1972. Real-time simulation of multihead tape units. J. ACM 19, 4 (Oct.), 590-607.
[7]
GRIGORmV, D. Yu. 1977. Imbedding theorems for Turing machines of different dimensions and Kolmogorov's algorithms. Soy. Math. 18, 3 (May-June), 588-592.
[8]
HARTMANIS, J., AND STEARNS, R.E. 1965. On the computational complexity of algorithms. Trans. Am. Math. Soc. 117, 5 (May), 285-306.
[9]
HENNIE, F.C. 1966. On-line Turing machine computations. IEEE Trans. Elect. Comput. EC-15, 1 (Feb.), 35-44.
[10]
KOLMOGOROV, A.N. 1965. Three approaches to the quantitative definition of information. Prob. Inf. Transm. 1, 1 (Jan.-Mar.), 1-7.
[11]
LEONG, B. L., AND SEIFERAS, J.I. 1981. New real-time simulations of multihead tape units. J. ACM 28, 1 (Jan.), 166-180.
[12]
LI, M., LONGPRt#, L., AND VITANYI, P. M.B. 1992. The power of the queue. SIAM J. Comput. 21, 4 (Aug.), 697-712.
[13]
LI, M., AND VITANYI, P. M. B. 1988. Tape versus queue and stacks: The lower bounds. Inf. Comput. 78, 1 (July), 56-85.
[14]
LI, M., AND VITANYI, P. M.B. 1993. An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag, New York.
[15]
MAASS, W. 1985. Combinatorial lower bound arguments for deterministic and nondeterministic Turing machines. Trans. Am. Math. Soc. 292, 2 (Dec.), 675-693.
[16]
MAASS, W., SCHNITGER, G., SZEMERt#DI, E., AND TURAN, G. 1993. Two tapes versus one for off-line Turing machines. Comput. Complex. 3, 4, 392-401.
[17]
MEYER, A.R. 1971. An optimal time bound for a one tape on-line Turing machine computation. Unpublished manuscript. (Earlier version cited in MEYER EY AL. 1967.)
[18]
MEYER, A. R., ROSENBERG, A. L., AND FISCHER, P. C. 1967. Turing machines with several read-write heads, preliminary report. In IEEE Conference Record of 1967 8th Annual Symposium on Switching and Automata Theory. IEEE Computer Society, Long Beach, Calif., pp. 117-127.
[19]
PATURI, R., SEIFERAS, J. I., SIMON, J., AND NEWMAN-WOLFE, R.E. 1990. Milking the Aanderaa argument. Inf. Comput. 88, 1 (Sept.), 88-104.
[20]
PAUL, W.J. 1982. On-line simulation of k + 1 tapes by k tapes requires nonlinear time. Inf. Cont. 53, 1-2 (Apr.-May), 1-8.
[21]
PAUL, W.J. 1984. On heads versus tapes. Theoret. Comput. Sci. 28, 1-2 (Jan.), 1-12.
[22]
PAUL, W. J., SEIFERAS, J. I., AND SIMON, J. 1981. An information-theoretic approach to time bounds for on-line computation. J. Comput. Syst. Sci. 23, 2 (Oct.), 108-126.
[23]
RABIN, M.O. 1963. Real time computation. Is. J. Math. 1, 4 (Dec.), 203-211.
[24]
SCHNITZLEIN, W., AND STOle, H.-J. 1989. Linear-time simulation of multihead Turing machines. Inf. Comput. 81, 3 (June), 353-363.
[25]
STOI3, H.-J. 1970. k-Band-Simulation von k-Kopf-Turing-Maschinen. Computing 6, 3, 309-317 (in German).
[26]
VALmV, K. 1970/1973. Certain estimates of the time of computation on Turing machines with an input. Cybernetics 6, 6 (June 1973), 734-741 (translated from Russian, published in Kibernetika 6, 6 (Nov.-Dec. 1970), 26-32).
[27]
VITANYI, P. M.B. 1984. On two-tape real-time computation and queues. J. Comput. Syst. Sci. 29, 3 (Dec.), 303-311.
[28]
ZVONKIN, A. K., AND LEVIN, g.A. 1970. The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russ. Math. Surv. 25, 6 (Nov.-Dec.), 83-124.

Cited By

View all
  • (2023)Summary of the 2nd Natural Language-based Software Engineering Workshop (NLBSE 2023)ACM SIGSOFT Software Engineering Notes10.1145/3617946.361795748:4(60-63)Online publication date: 17-Oct-2023
  • (2023)Fostering Collaboration and Advancing Research in Software Engineering and Game Development for Serious ContextsACM SIGSOFT Software Engineering Notes10.1145/3617946.361795548:4(46-50)Online publication date: 17-Oct-2023
  • (2023)Towards a Research Agenda for Understanding and ManagingUncertainty in Self-Adaptive SystemsACM SIGSOFT Software Engineering Notes10.1145/3617946.361795148:4(20-36)Online publication date: 17-Oct-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 44, Issue 2
March 1997
161 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/256303
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 March 1997
Published in JACM Volume 44, Issue 2

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)71
  • Downloads (Last 6 weeks)17
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media