skip to main content
research-article

Robust fairing via conformal curvature flow

Published: 21 July 2013 Publication History

Abstract

We present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and naturally preserves the quality of the input mesh. The main insight is that Willmore flow becomes remarkably stable when expressed in curvature space -- we develop the precise conditions under which curvature is allowed to evolve. The practical outcome is a highly efficient algorithm that naturally preserves texture and does not require remeshing during the flow. We apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces. We also present a new algorithm for length-preserving flow on planar curves, which provides a valuable analogy for the surface case.

Supplementary Material

ZIP File (a61-crane.zip)
Supplemental material.
MP4 File (tp099.mp4)

References

[1]
Blaschke, W., and Thomsen, G. 1929. Vorlesungen über Differentialgeometrie III. Springer, Ch. Invarianten der Kreisgeometrie von Möbius, 46--91.
[2]
Bobenko, A., and Schröder P 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc., 101--110.
[3]
Bohle, C., and Pinkall, U. 2013. Conformal Deformations of Immersed Discs in R3 and Elliptic Boundary Value Problems. ArXiv e-prints (Jan.).
[4]
Botsch, M., and Kobbelt, L. 2004. A Remeshing Approach to Multiresolution Modeling. In Proc. Symp. Geom. Proc., 185--192.
[5]
Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., and Pauly, M. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comp. Graph. Forum 31, 5, 1657--1667.
[6]
Brakke, K. 1992. The Surface Evolver. Experiment Math. 1, 2, 141--165.
[7]
Canham, P. B. 1970. The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. J. Th. Bio. 26, 1, 61--81.
[8]
Celniker, G., and Gossard, D. 1991. Deformable Curve and Surface Finite-Elements for Free-Form Shape Design. Comp. Graph. (Proc. of ACM/SIGGRAPH Conf.) 25, 4, 257--266.
[9]
Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35.
[10]
Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., and Rusu, R. 2004. A Finite Element Method for Surface Restoration with Smooth Boundary Conditions. Comput. Aided Geom. Des. 21, 5, 427--445.
[11]
Colding, T. H., and MiNicozzi, II, W. P. 2012. Generic Mean Curvature Flow I; Generic Singularities. Ann. Math. 175, 2, 755--833.
[12]
Crane, K., Pinkall, U., and Schröder, P. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30, 4, 104:1--104:10.
[13]
Crane, K., 2012. SpinXForm. http://multires.caltech.edu/~keenan/project_spinxform.html#sourcecode.
[14]
Crane, K. 2013. Conformal Geometry Processing. PhD thesis, Caltech.
[15]
deGoes, F., Goldenstein, S., and Velho, L. 2008. A Simple and Flexible Framework to adapt Dynamic Meshes. Comp. & Graph. 32, 2, 141--148.
[16]
Desbrun, M., Meyer, M., Schröder, P., and Barr A. 1999. Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow. In Proc. ACM/SIGGRAPH Conf., 317--324.
[17]
Desbrun, M., Kanso, E., and Tong, Y 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars. Birkhäuser Verlag, 287--324.
[18]
Eckstein, I., Pons, J.-P., Tong, Y., Kuo, C. J., and Desbrun, M. 2007. Generalized Surface Fows for Mesh Processing. In Proc. Symp. Geom. Proc., 183--192.
[19]
Gu, X., Zeng, W., Luo, F., and Yau, S.-T. 2011. Numerical Computation of Surface Conformal Mappings. Comp. Meth. & Fun. Theory. 11, 2, 747--787.
[20]
Helfrich, W. 1973. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturf. C 28, 11, 693--703.
[21]
Kamberoy G., Pedit, F., and Pinkall, U. 1998. Bonnet Pairs and Isothermic Surfaces. Duke Math. J. 92, 3, 637--644.
[22]
Kamberoy G., Norman, P., Pedit, F., and Pinkall, U. 2002. Quaternions, Spinors and Surfaces, Vol. 299 of Contemp. Math. AMS.
[23]
Kazhdan, M., Solomon, J., and Ben-Chen, M. 2012. Can Mean-Curvature Flow Be Made Non-Singular? Comp. Graph. Forum 31, 5, 1745--1754.
[24]
Olischläger, N, and Rumpf, M. 2009. Two Step Time Discretization of Willmore Flow. In Mathematics of Surfaces XIII, Vol. 5654/2009 of Lect N. in Comp. Sc. Springer, 278--292.
[25]
Pan, H., Choi, Y.-K., Liu, Y., Hu, W., Du, Q., Polthier K., Zhang, C., and Wang, W. 2012. Robust Modeling of Constant Mean Curvature Surfaces. ACM Trans. Graph. 31, 4.
[26]
Pinkall, U., and Sterling, I. 1987. Willmore Surfaces. Math. Intell. 9, 2, 38--43.
[27]
Sander P. V., Snyder J., Gortler S. J., and Hoppe, H. 2001. Texture Mapping Progressive Meshes. In Proc. ACM/SIGGRAPH Conf., 409--416.
[28]
Schneider R., and Kobbelt, L. 2001. Geometric Fairing of Irregular Meshes for Free-From Surface Design. Comput. Aided Geom. Des. 18, 4, 359--379.
[29]
Taubin, G. 1995. A Signal Processing Approach to Fair Surface Design. In Proc. ACM/SIGGRAPH Conf., 351--358.
[30]
Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., and Grinspun, E. 2007. Discrete Quadratic Curvature Energies. Comput. Aided Geom. Des. 24, 8--9, 499--518.
[31]
Welch, W., and Witkin, A. 1994. Free-Form Shape Design Using Triangulated Surfaces. Comp. Graph. (Proc. of ACM/SIGGRAPH Conf.) 28, 247--256.
[32]
Yoshizawa, S., and Belyaev, A. G. 2002. Fair Triangle Mesh Generation with Discrete Elastica. In Geo. Mod. & Proc., 119--123.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 32, Issue 4
July 2013
1215 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2461912
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 July 2013
Published in TOG Volume 32, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. conformal geometry
  2. digital geometry processing
  3. discrete differential geometry
  4. geometric modeling
  5. quaternions
  6. shape spaces
  7. spin geometry
  8. surface fairing

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)107
  • Downloads (Last 6 weeks)7
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media