skip to main content
research-article

L1-medial skeleton of point cloud

Published: 21 July 2013 Publication History

Abstract

We introduce L1-medial skeleton as a curve skeleton representation for 3D point cloud data. The L1-median is well-known as a robust global center of an arbitrary set of points. We make the key observation that adapting L1-medians locally to a point set representing a 3D shape gives rise to a one-dimensional structure, which can be seen as a localized center of the shape. The primary advantage of our approach is that it does not place strong requirements on the quality of the input point cloud nor on the geometry or topology of the captured shape. We develop a L1-medial skeleton construction algorithm, which can be directly applied to an unoriented raw point scan with significant noise, outliers, and large areas of missing data. We demonstrate L1-medial skeletons extracted from raw scans of a variety of shapes, including those modeling high-genus 3D objects, plant-like structures, and curve networks.

Supplementary Material

MP4 File (tp166.mp4)

References

[1]
Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., and Lee, T.-Y. 2008. Skeleton extraction by mesh contraction. ACM Trans. on Graph (Proc. of SIGGRAPH) 27, 3, 44:1--44:10.
[2]
Avron, H., Sharf, A., Greif, C., and Cohen-Or, D. 2010. l1-sparse reconstruction of sharp point set surfaces. ACM Trans. on Graph 29, 5, 135:1--135:12.
[3]
Blum, H. 1967. A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form, 362--380.
[4]
Bucksch, A., Lindenbergh, R., and Menenti, M. 2010. Skeltre: Robust skeleton extraction from imperfect point clouds. The Visual Computer 26, 10, 1283--1300.
[5]
Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., and Su, Z. 2010. Point cloud skeletons via laplacian based contraction. Proc. IEEE Int. Conf. on Shape Modeling and Applications, 187--197.
[6]
Chuang, M., and Kazhdan, M. 2011. Fast mean-curvature flow via finite-elements tracking. Computer Graphics Forum (Proc. of Eurographics) 30, 6, 1750--1760.
[7]
Chung, J.-h., Tsai, C.-h., and Ko, M.-c. 2000. Skeletonization of three-dimensional object using generalized potential field. IEEE Trans. Pat. Ana. & Mach. Int. 22, 11, 1241--1251.
[8]
Cornea, N. D., Silver, D., and Min, P. 2007. Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. & Comp. Graphics 13, 3, 530--548.
[9]
Daszykowski, M., Kaczmarek, K., Heyden, Y. V., and Walczak, B. 2007. Robust statistics in data analysis - a review: Basic concept. Chemometrics and Intelligent Lab. Sys. 85, 2, 203--219.
[10]
Dey, T. K., and Sun, J. 2006. Defining and computing curve-skeletons with medial geodesic function. Symp. on Geom. Proc., 143--152.
[11]
Fukunaga, K., and Hostetler, L. D. 1975. The estimation of the gradient of a density function with applications in pattern recognition. IEEE Trans. Info. Theo. 21, 32--40.
[12]
Gander, W., Golub, G. H., and Strebel, R. 1994. Least squares fitting of circles and ellipses. BIT Numerical Mathematics 34, 558--578.
[13]
Hassouna, M. S., and Farag, A. A. 2009. Variational curve skeletons using gradient vector flow. IEEE Trans. Pat. Ana. & Mach. Int. 31, 12, 2257--2274.
[14]
Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunil, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. Proc. of SIGGRAPH, 203--212.
[15]
Huang, H., Li, D., Zhang, H., Ascher, U., and Cohen-Or, D. 2009. Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. on Graph (Proc. of SIGGRAPH Asia) 28, 5, 176:1--176:7.
[16]
Jiang, W., Xu, K., Cheng, Z., Martin, R. R., and Dang, G. 2013. Curve skeleton extraction by coupled graph contraction and surface clustering. Graphical Models 75, 3, 137--148.
[17]
Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. on Graph (Proc. of SIGGRAPH) 22, 3, 954--961.
[18]
Li, G., Liu, L., Zheng, H., and Mitra, N. J. 2010. Analysis, reconstruction and manipulation using arterial snakes. ACM Trans. on Graph (Proc. of SIGGRAPH Asia) 29, 5, 152:1--152:10.
[19]
Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H. 2007. Parameterization-free projection for geometry reconstruction. ACM Trans. on Graph (Proc. of SIGGRAPH) 26, 3, 22:1--22:6.
[20]
Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., and El-sana, J. 2010. Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans. on Graph (Proc. of SIGGRAPH Asia) 29, 6, 151:1--151:8.
[21]
Lu, L., Lévy, B., and Wang, W. 2012. Centroidal voronoi tessellations for line segments and graphs. Computer Graphics Forum (Proc. of Eurographics) 31, 2, 775--784.
[22]
Milasevic, P., and Ducharme, G. R. 1987. Uniqueness of the spatial median. Ann. Statist. 15, 1332--1333.
[23]
Mullen, P., de Goes, F., Desbrun, M., Cohen-Steiner, D., and Alliez, P. 2010. Signing the unsigned: Robust surface reconstruction from raw pointsets. Computer Graphics Forum 29, 1733--1741.
[24]
Natali, M., Biasotti, S., Patan, G., and BiancaFalcidieno. 2011. Graph-based representations of point clouds. Graphical Models 73, 151--164.
[25]
Sharf, A., Lewiner, T., Shamir, A., and Kobbelt, L. 2007. On-the-fly curve-skeleton computation for 3D shapes. Computer Graphics Forum 26, 323--328.
[26]
Siddiqi, K., and Pizer, S. 2009. Medial Representations: Mathematics, Algorithms and Applications. Springer.
[27]
Small, C. G. 1990. A survey of multidimensional medians. International Statistical Review 58, 3, 263--277.
[28]
Tagliasacchi, A., Zhang, H., and Cohen-Or, D. 2009. Curve skeleton extraction from incomplete point cloud. ACM Trans. on Graph (Proc. of SIGGRAPH) 28, 3, 71:1--71:9.
[29]
Tagliasacchi, A., Alhashim, I., Olson, M., and Zhang, H. 2012. Mean curvature skeletons. Computer Graphics Forum (Proc. of Symposium on Geometry Processing) 31, 5, 1735--1744.
[30]
Weber, A. 1909. Über den Standort der Industrie. Tübingen, J. C. B. Mohr (Paul Siebeck). English translation by C. J. Freidrich (1929): Alfred WebersTheory of the Location of Industries.
[31]
Willcocks, C. G., and Li, F. W. B. 2012. Feature-varying skeletonization - intuitive control over the target feature size and output skeleton topology. The Visual Computer 28, 6-8, 775--785.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 32, Issue 4
July 2013
1215 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2461912
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 July 2013
Published in TOG Volume 32, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. L1-median
  2. curve skeleton
  3. point cloud
  4. regularization

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)213
  • Downloads (Last 6 weeks)40
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media